Search results
Results from the WOW.Com Content Network
Thus, both products can be computed with a single-width product, and the difference between them lies in the range [1−m, m−1], so can be reduced to [0, m−1] with a single conditional add. [13] A second disadvantage is that it is awkward to convert the value 1 ≤ x < m to uniform random bits. If a prime just less than a power of 2 is used ...
In mathematics and statistics, a quantitative variable may be continuous or discrete if it is typically obtained by measuring or counting, respectively. [1] If it can take on two particular real values such that it can also take on all real values between them (including values that are arbitrarily or infinitesimally close together), the variable is continuous in that interval. [2]
In probability theory and information theory, the mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables. More specifically, it quantifies the " amount of information " (in units such as shannons ( bits ), nats or hartleys ) obtained about one random variable by observing the other random ...
The exponential distribution, which describes the time between consecutive rare random events in a process with no memory. The exponential-logarithmic distribution; The F-distribution, which is the distribution of the ratio of two (normalized) chi-squared-distributed random variables, used in the analysis of variance.
In physics and mathematics, a random field is a random function over an arbitrary domain (usually a multi-dimensional space such as ). That is, it is a function f ( x ) {\displaystyle f(x)} that takes on a random value at each point x ∈ R n {\displaystyle x\in \mathbb {R} ^{n}} (or some other domain).
The cross-covariance is also relevant in signal processing where the cross-covariance between two wide-sense stationary random processes can be estimated by averaging the product of samples measured from one process and samples measured from the other (and its time shifts).
Formally, a multivariate random variable is a column vector = (, …,) (or its transpose, which is a row vector) whose components are random variables on the probability space (,,), where is the sample space, is the sigma-algebra (the collection of all events), and is the probability measure (a function returning each event's probability).
The cross-correlation matrix of two random vectors is a matrix containing as elements the cross-correlations of all pairs of elements of the random vectors. The cross-correlation matrix is used in various digital signal processing algorithms.