Search results
Results from the WOW.Com Content Network
The graph of the square function y = x 2 is a parabola. The squaring operation defines a real function called the square function or the squaring function. Its domain is the whole real line, and its image is the set of nonnegative real numbers. The square function preserves the order of positive numbers: larger numbers have larger squares.
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
For the quadratic function y = x 2 − x − 2, the points where the graph crosses the x-axis, x = −1 and x = 2, are the solutions of the quadratic equation x 2 − x − 2 = 0. The process of completing the square makes use of the algebraic identity x 2 + 2 h x + h 2 = ( x + h ) 2 , {\displaystyle x^{2}+2hx+h^{2}=(x+h)^{2},} which represents ...
These forbidden graphs are the cube (the simplex graph of K 3), the Cartesian product of an edge and a claw K 1,3 (the simplex graph of a claw), and the graphs formed from a gear graph by adding one more vertex connected to the hub of the wheel (the simplex graph of the disjoint union of a cycle with an isolated vertex).
Graph of y = ax 2 + bx + c, where a and the discriminant b 2 − 4ac are positive, with. Roots and y-intercept in red; Vertex and axis of symmetry in blue; Focus and directrix in pink; Visualisation of the complex roots of y = ax 2 + bx + c: the parabola is rotated 180° about its vertex (orange).
Although the chromatic number of the square of a nonplanar graph with maximum degree Δ may be proportional to Δ 2 in the worst case, it is smaller for graphs of high girth, being bounded by O(Δ 2 / log Δ) in this case. [8] Determining the minimum number of colors needed to color the square of a graph is NP-hard, even in the planar case. [9]
In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph. In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal.
A common type of lattice graph (known under different names, such as grid graph or square grid graph) is the graph whose vertices correspond to the points in the plane with integer coordinates, x-coordinates being in the range 1, ..., n, y-coordinates being in the range 1, ..., m, and two vertices being connected by an edge whenever the corresponding points are at distance 1.