Search results
Results from the WOW.Com Content Network
In mechanical engineering, backlash, sometimes called lash, play, or slop, is a clearance or lost motion in a mechanism caused by gaps between the parts. It can be defined as "the maximum distance or angle through which any part of a mechanical system may be moved in one direction without applying appreciable force or motion to the next part in mechanical sequence."
Tait–Bryan angles. z-y′-x″ sequence (intrinsic rotations; N coincides with y’). The angle rotation sequence is ψ, θ, φ. Note that in this case ψ > 90° and θ is a negative angle. Similarly for Euler angles, we use the Tait Bryan angles (in terms of flight dynamics): Heading – : rotation about the Z-axis
The Euler angles are three angles introduced by Leonhard Euler to describe the orientation of a rigid body with respect to a fixed coordinate system. [ 1 ] They can also represent the orientation of a mobile frame of reference in physics or the orientation of a general basis in three dimensional linear algebra .
A Rzeppa-type (Birfield) CV joint. A constant-velocity joint (also called a CV joint and homokinetic joint) is a mechanical coupling which allows the shafts to rotate freely (without an appreciable increase in friction or backlash) and compensates for the angle between the two shafts, within a certain range, to maintain the same velocity.
The angles of rotation are called Davenport angles because the general problem of decomposing a rotation in a sequence of three was studied first by Paul B. Davenport. [1] The non-orthogonal rotating coordinate system may be imagined to be rigidly attached to a rigid body. In this case, it is sometimes called a local coordinate system.
Then, using the triangle law of sines, it is found that the rod-vertical angle is 18.60647° and the crank-rod angle is 88.21738°. Clearly, in this example, the angle between the crank and the rod is not a right angle. Summing the angles of the triangle 88.21738° + 18.60647° + 73.17615° gives 180.00000°.
The degree of curvature is defined as the central angle to the ends of an agreed length of either an arc or a chord; [1] various lengths are commonly used in different areas of practice. This angle is also the change in forward direction as that portion of the curve is traveled.
If vectors u and v have direction cosines (α u, β u, γ u) and (α v, β v, γ v) respectively, with an angle θ between them, their units vectors are ^ = + + (+ +) = + + ^ = + + (+ +) = + +. Taking the dot product of these two unit vectors yield, ^ ^ = + + = , where θ is the angle between the two unit vectors, and is also the angle between u and v.