enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binary-to-text encoding - Wikipedia

    en.wikipedia.org/wiki/Binary-to-text_encoding

    Files that contain machine-executable code and non-textual data typically contain all 256 possible eight-bit byte values. Many computer programs came to rely on this distinction between seven-bit text and eight-bit binary data, and would not function properly if non-ASCII characters appeared in data that was expected to include only ASCII text ...

  3. ASCII - Wikipedia

    en.wikipedia.org/wiki/ASCII

    ASCII (/ ˈ æ s k iː / ⓘ ASS-kee), [3]: 6 an acronym for American Standard Code for Information Interchange, is a character encoding standard for electronic communication. . ASCII codes represent text in computers, telecommunications equipment, and other devic

  4. List of file signatures - Wikipedia

    en.wikipedia.org/wiki/List_of_file_signatures

    In the table below, the column "ISO 8859-1" shows how the file signature appears when interpreted as text in the common ISO 8859-1 encoding, with unprintable characters represented as the control code abbreviation or symbol, or codepage 1252 character where available, or a box otherwise. In some cases the space character is shown as ␠.

  5. Ascii85 - Wikipedia

    en.wikipedia.org/wiki/Ascii85

    Ascii85, also called Base85, is a form of binary-to-text encoding developed by Paul E. Rutter for the btoa utility. By using five ASCII characters to represent four bytes of binary data (making the encoded size 1 ⁄ 4 larger than the original, assuming eight bits per ASCII character), it is more efficient than uuencode or Base64, which use four characters to represent three bytes of data (1 ...

  6. Code page 932 (Microsoft Windows) - Wikipedia

    en.wikipedia.org/wiki/Code_page_932_(Microsoft...

    It contains standard 7-bit ASCII codes, and Japanese characters are indicated by the high bit of the first byte being set to 1. Some code points in this page require a second byte, so characters use either 8 or 16 bits for encoding. IBM offer the same extended double-byte codes in their code page 943 (IBM-943 or CP943), [5] which is a ...

  7. Character encoding - Wikipedia

    en.wikipedia.org/wiki/Character_encoding

    A code point is a value or position of a character in a coded character set. [10] A code space is the range of numerical values spanned by a coded character set. [10] [12] A code unit is the minimum bit combination that can represent a character in a character encoding (in computer science terms, it is the word size of the character encoding).

  8. UTF-8 - Wikipedia

    en.wikipedia.org/wiki/UTF-8

    This led to the idea that text in Chinese and other languages would take more space in UTF-8. However, text is only larger if there are more of these code points than 1-byte ASCII code points, and this rarely happens in the real-world documents due to spaces, newlines, digits, punctuation, English words, and (depending on document format) markup.

  9. UTF-32 - Wikipedia

    en.wikipedia.org/wiki/UTF-32

    UTF-32 (32-bit Unicode Transformation Format), sometimes called UCS-4, is a fixed-length encoding used to encode Unicode code points that uses exactly 32 bits (four bytes) per code point (but a number of leading bits must be zero as there are far fewer than 2 32 Unicode code points, needing actually only 21 bits). [1]