Search results
Results from the WOW.Com Content Network
The format of an n-bit posit is given a label of "posit" followed by the decimal digits of n (e.g., the 16-bit posit format is "posit16") and consists of four sequential fields: sign: 1 bit, representing an unsigned integer s; regime: at least 2 bits and up to (n − 1), representing an unsigned integer r as described below
The variable, byte_of_data, is an 8-bit unsigned integer. As an example, consider the 64-bit FNV-1 hash: All variables, except for byte_of_data, are 64-bit unsigned integers. The variable, byte_of_data, is an 8-bit unsigned integer. The FNV_offset_basis is the 64-bit value: 14695981039346656037 (in hex, 0xcbf29ce484222325).
For example, a two's complement signed 16-bit integer can hold the values −32768 to 32767 inclusively, while an unsigned 16 bit integer can hold the values 0 to 65535. For this sign representation method, the leftmost bit ( most significant bit ) denotes whether the value is negative (0 for positive or zero, 1 for negative).
The current version, completed April 3, 2011, is MurmurHash3, [12] [13] which yields a 32-bit or 128-bit hash value. When using 128-bits, the x86 and x64 versions do not produce the same values, as the algorithms are optimized for their respective platforms. MurmurHash3 was released alongside SMHasher, a hash function test suite.
The digit bits contain the numeric value 0–9. The zone bits contain either 'F'x, forming the characters 0–9, or the character position containing the overpunch contains a hexadecimal value indicating a positive or negative value, forming a different set of characters. (A, C, E, and F zones indicate positive values, B and D negative).
Both formats break a number down into a sign bit s, an exponent q (between q min and q max), and a p-digit significand c (between 0 and 10 p −1). The value encoded is (−1) s ×10 q ×c. In both formats the range of possible values is identical, but they differ in how the significand c is represented.
If the variable has a signed integer type, a program may make the assumption that a variable always contains a positive value. An integer overflow can cause the value to wrap and become negative, which violates the program's assumption and may lead to unexpected behavior (for example, 8-bit integer addition of 127 + 1 results in −128, a two's ...
To encode an unsigned number using unsigned LEB128 (ULEB128) first represent the number in binary. Then zero extend the number up to a multiple of 7 bits (such that if the number is non-zero, the most significant 7 bits are not all 0). Break the number up into groups of 7 bits.