enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes. [1] [2]Mathematical induction is a method for proving that a statement () is true for every natural number, that is, that the infinitely many cases (), (), (), (), … all hold.

  3. Bernoulli's inequality - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_inequality

    Bernoulli's inequality can be proved for case 2, in which is a non-negative integer and , using mathematical induction in the following form: we prove the inequality for {,}, from validity for some r we deduce validity for +.

  4. Axiom of dependent choice - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_dependent_choice

    In mathematics, the axiom of dependent choice, denoted by , is a weak form of the axiom of choice that is still sufficient to develop much of real analysis. It was introduced by Paul Bernays in a 1942 article in reverse mathematics that explores which set-theoretic axioms are needed to develop analysis.

  5. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    In proof by mathematical induction, a single "base case" is proved, and an "induction rule" is proved that establishes that any arbitrary case implies the next case. Since in principle the induction rule can be applied repeatedly (starting from the proved base case), it follows that all (usually infinitely many) cases are provable. [ 15 ]

  6. Proofs involving the addition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_the...

    We prove commutativity (a + b = b + a) by applying induction on the natural number b. First we prove the base cases b = 0 and b = S(0) = 1 (i.e. we prove that 0 and 1 commute with everything). The base case b = 0 follows immediately from the identity element property (0 is an additive identity), which has been proved above: a + 0 = a = 0 + a.

  7. Solomonoff's theory of inductive inference - Wikipedia

    en.wikipedia.org/wiki/Solomonoff's_theory_of...

    The proof of this is derived from a game between the induction and the environment. Essentially, any computable induction can be tricked by a computable environment, by choosing the computable environment that negates the computable induction's prediction. This fact can be regarded as an instance of the no free lunch theorem.

  8. Proof by exhaustion - Wikipedia

    en.wikipedia.org/wiki/Proof_by_exhaustion

    Proof by exhaustion, also known as proof by cases, proof by case analysis, complete induction or the brute force method, is a method of mathematical proof in which the statement to be proved is split into a finite number of cases or sets of equivalent cases, and where each type of case is checked to see if the proposition in question holds. [1]

  9. Direct proof - Wikipedia

    en.wikipedia.org/wiki/Direct_proof

    In mathematics and logic, a direct proof is a way of showing the truth or falsehood of a given statement by a straightforward combination of established facts, usually axioms, existing lemmas and theorems, without making any further assumptions. [1]