Search results
Results from the WOW.Com Content Network
In geometry, a tetrahedron (pl.: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertices. The tetrahedron is the simplest of all the ordinary convex polyhedra .
Polytetrahedron is a term used for three distinct types of objects, all based on the tetrahedron: . A uniform convex 4-polytope made up of 600 tetrahedral cells.It is more commonly known as a 600-cell or hexacosichoron.
The following are trigonometric quantities generally associated to a general tetrahedron: The 6 edge lengths - associated to the six edges of the tetrahedron.; The 12 face angles - there are three of them for each of the four faces of the tetrahedron.
A regular tetrahedron, an example of a solid with full tetrahedral symmetry. A regular tetrahedron has 12 rotational (or orientation-preserving) symmetries, and a symmetry order of 24 including transformations that combine a reflection and a rotation.
Four numbering schemes for the uniform polyhedra are in common use, distinguished by letters: [C] Coxeter et al., 1954, showed the convex forms as figures 15 through 32; three prismatic forms, figures 33–35; and the nonconvex forms, figures 36–92.
Animation of a Reuleaux tetrahedron, showing also the tetrahedron from which it is formed Four balls intersect to form a Reuleaux tetrahedron. Reuleaux tetrahedron. The Reuleaux tetrahedron is the intersection of four balls of radius s centered at the vertices of a regular tetrahedron with side length s. [1]
The 600-cell is the fifth in the sequence of 6 convex regular 4-polytopes (in order of complexity and size at the same radius). [a] It can be deconstructed into twenty-five overlapping instances of its immediate predecessor the 24-cell, [5] as the 24-cell can be deconstructed into three overlapping instances of its predecessor the tesseract (8-cell), and the 8-cell can be deconstructed into ...
In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol {3,3,3}. It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C 5, hypertetrahedron, pentachoron, [1] pentatope, pentahedroid, [2] tetrahedral pyramid, or 4-simplex (Coxeter's polytope), [3] the simplest possible convex 4-polytope, and is analogous to the tetrahedron in three ...