Search results
Results from the WOW.Com Content Network
This ozone UV absorption is important to life, since it extends the absorption of UV by ordinary oxygen and nitrogen in air (which absorb all wavelengths < 200 nm) through the lower UV-C (200–280 nm) and the entire UV-B band (280–315 nm).
Oxygen and ozone continuously interconverted. Solar UV breaks down oxygen; molecular and atomic oxygen combine to form Ozone. 3. Ozone is lost by reaction with atomic oxygen (plus other trace atoms). The ozone–oxygen cycle is the process by which ozone is continually regenerated in Earth's stratosphere, converting ultraviolet radiation (UV ...
The ozone layer visible from space at Earth's horizon as a blue band of afterglow within the bottom of the large bright blue band that is the stratosphere, with a silhouette of a cumulonimbus in the orange afterglow of the troposphere. The ozone layer or ozone shield is a region of Earth's stratosphere that absorbs most of the Sun's ultraviolet ...
Most of the UV in the mid-range of energy is blocked by the ozone layer, which absorbs strongly in the important 200–315 nm range, the lower energy part of which is too long for ordinary dioxygen in air to absorb. This leaves less than 3% of sunlight at sea level in UV, with all of this remainder at the lower energies.
Because ozone absorbs light in the UV spectrum, the most common way to measure ozone is to measure how much of this light spectrum is absorbed in the atmosphere. [ 14 ] [ 15 ] Because the stratosphere has higher ozone concentration than the troposphere, it is important for remote sensing instruments to be able to determine altitude along with ...
Absorptions bands in the Earth's atmosphere created by greenhouse gases and the resulting effects on transmitted radiation.. In spectroscopy, an absorption band is a range of wavelengths, frequencies or energies in the electromagnetic spectrum that are characteristic of a particular transition from initial to final state in a substance.
The spectrum does not contain all the colors that the human visual system can distinguish. Unsaturated colors such as pink, or purple variations like magenta, for example, are absent because they can only be made from a mix of multiple wavelengths. Colors containing only one wavelength are also called pure colors or spectral colors. [8] [9]
The formation of the ozone layer is also caused by photodissociation. Ozone in the Earth's stratosphere is created by ultraviolet light striking oxygen molecules containing two oxygen atoms (O 2), splitting them into individual oxygen atoms (atomic oxygen). The atomic oxygen then combines with unbroken O 2 to create ozone, O 3. [17]