Search results
Results from the WOW.Com Content Network
List of orders of magnitude for molar concentration; Factor (Molarity) SI prefix Value Item 10 −24: yM 1.66 yM: 1 elementary entity per litre [1]: 8.5 yM: airborne bacteria in the upper troposphere (5100/m 3) [2]
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase : [2]
The mole (symbol mol) is a unit of measurement, the base unit in the International System of Units (SI) for amount of substance, an SI base quantity proportional to the number of elementary entities of a substance.
meter per second (m/s) specific heat capacity: joule per kilogram per kelvin (J⋅kg −1 ⋅K −1) viscous damping coefficient kilogram per second (kg/s) electric displacement field also called the electric flux density coulomb per square meter (C/m 2) density: kilogram per cubic meter (kg/m 3) diameter: meter (m)
The official symbol for the SI prefix micro is a Greek lowercase mu (μ). [7] For reasons stemming from its design, Unicode has two different character codes for the letter, with slightly different appearance in some fonts, although most fonts use the same glyph.
The SI unit is the katal, 1 katal = 1 mol s −1 (mole per second), but this is an excessively large unit. A more practical and commonly used value is enzyme unit (U) = 1 μmol min −1 (micromole per minute). 1 U corresponds to 16.67 nanokatals. [1]
The enzyme unit, or international unit for enzyme (symbol U, sometimes also IU) is a unit of enzyme's catalytic activity. [1]1 U (μmol/min) is defined as the amount of the enzyme that catalyzes the conversion of one micro mole of substrate per minute under the specified conditions of the assay method.
Historically, the mole was defined as the amount of substance in 12 grams of the carbon-12 isotope.As a consequence, the mass of one mole of a chemical compound, in grams, is numerically equal (for all practical purposes) to the mass of one molecule or formula unit of the compound, in daltons, and the molar mass of an isotope in grams per mole is approximately equal to the mass number ...