Search results
Results from the WOW.Com Content Network
Once two of the three reduced properties are found, the compressibility chart can be used. In a compressibility chart, reduced pressure is on the x-axis and Z is on the y-axis. When given the reduced pressure and temperature, find the given pressure on the x-axis. From there, move up on the chart until the given reduced temperature is found.
Includes a chart of compressibility factors versus reduced pressure and reduced temperature (on last page of the PDF document) Theorem of corresponding states on SklogWiki . This thermodynamics -related article is a stub .
The compressibility factor is defined as = where p is the pressure of the gas, T is its temperature, and is its molar volume, all measured independently of one another. In the case of an ideal gas, the compressibility factor Z is equal to unity, and the familiar ideal gas law is recovered:
These dimensionless thermodynamic coordinates, taken together with a substance's compressibility factor, provide the basis for the simplest form of the theorem of corresponding states. [1] Reduced properties are also used to define the Peng–Robinson equation of state, a model designed to provide reasonable accuracy near the critical point. [2]
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The virial expansion is a model of thermodynamic equations of state.It expresses the pressure P of a gas in local equilibrium as a power series of the density.This equation may be represented in terms of the compressibility factor, Z, as = + + + This equation was first proposed by Kamerlingh Onnes. [1]
The compressibility factor is a dimensionless quantity which is equal to 1 for ideal gases and deviates from unity for increasing levels of non-ideality. [ 9 ] Several non-ideal models exist, from the simplest cubic equations of state (such as the Van der Waals [ 4 ] [ 10 ] and the Peng-Robinson [ 11 ] models) up to complex multi-parameter ones ...
To calculate the third state property, it is necessary to know three constants for the species at hand: the critical temperature T c, critical pressure P c, and the acentric factor ω. But once these constants are known, it is possible to evaluate all of the above expressions and hence determine the enthalpy and entropy departures.