Search results
Results from the WOW.Com Content Network
Buoyancy also applies to fluid mixtures, and is the most common driving force of convection currents. In these cases, the mathematical modelling is altered to apply to continua, but the principles remain the same. Examples of buoyancy driven flows include the spontaneous separation of air and water or oil and water.
Neutral buoyancy occurs when an object's average density is equal to the density of the fluid in which it is immersed, resulting in the buoyant force balancing the force of gravity that would otherwise cause the object to sink (if the body's density is greater than the density of the fluid in which it is immersed) or rise (if it is less). An ...
An object immersed in a liquid displaces an amount of fluid equal to the object's volume. Thus, buoyancy is expressed through Archimedes' principle, which states that the weight of the object is reduced by its volume multiplied by the density of the fluid. If the weight of the object is less than this displaced quantity, the object floats; if ...
(This formula is used for example in describing the measuring principle of a dasymeter and of hydrostatic weighing.) Example: If you drop wood into water, buoyancy will keep it afloat. Example: A helium balloon in a moving car. When increasing speed or driving in a curve, the air moves in the opposite direction to the car's acceleration.
"Buoyancy is defined as being positive" when, in the absence of other forces or initial motion, the entering fluid would tend to rise. Situations where the density of the plume fluid is greater than its surroundings (i.e. in still conditions, its natural tendency would be to sink), but the flow has sufficient initial momentum to carry it some ...
The third case is referred to as three-dimensional mixed convection. This flow occurs when the buoyant motion acts perpendicular to the forced motion. An example of this case is a hot, vertical flate plate with a horizontal flow, e.g. the surface of a solar thermal central receiver.
An example of a non-Boussinesq flow is bubbles rising in water. The behaviour of air bubbles rising in water is very different from the behaviour of water falling in air: in the former case rising bubbles tend to form hemispherical shells, while water falling in air splits into raindrops (at small length scales surface tension enters the ...
If it is much greater than unity, buoyancy is dominant (in the sense that there is insufficient kinetic energy to homogenize the fluids). If the Richardson number is of order unity, then the flow is likely to be buoyancy-driven: the energy of the flow derives from the potential energy in the system originally.