Search results
Results from the WOW.Com Content Network
Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...
Many applications of reinforcement learning do not involve just a single agent, but rather a collection of agents that learn together and co-adapt. These agents may be competitive, as in many games, or cooperative as in many real-world multi-agent systems. Multi-agent reinforcement learning studies the problems introduced in this setting.
In machine learning, reinforcement learning from human feedback (RLHF) is a technique to align an intelligent agent with human preferences. It involves training a reward model to represent preferences, which can then be used to train other models through reinforcement learning .
Reinforcement learning is a behavioral learning model where the algorithm provides data analysis feedback, directing the user to the best result. It enables an agent to learn through the ...
Proximal policy optimization (PPO) is a reinforcement learning (RL) algorithm for training an intelligent agent's decision function to accomplish difficult tasks. PPO was developed by John Schulman in 2017, [1] and had become the default RL algorithm at the US artificial intelligence company OpenAI. [2]
Reinforcement is an important component of operant conditioning and behavior modification. The concept has been applied in a variety of practical areas, including parenting, coaching, therapy, self-help, education, and management.
Social learning theory is a theory of social behavior that proposes that new behaviors can be acquired by observing and imitating others. It states that learning is a cognitive process that takes place in a social context and can occur purely through observation or direct instruction, even in the absence of motor reproduction or direct reinforcement. [1]
Imitation learning is a paradigm in reinforcement learning, where an agent learns to perform a task by supervised learning from expert demonstrations. It is also called learning from demonstration and apprenticeship learning. [1] [2] [3]