Search results
Results from the WOW.Com Content Network
The concept of force makes the everyday notion of pushing or pulling mathematically precise. Because the magnitude and direction of a force are both important, force is a vector quantity. The SI unit of force is the newton (N), and force is often represented by the symbol F. Force plays an important role in classical mechanics.
Magnitude Value Item 1 N 1.4 N The weight of a smartphone [13] [14]: 2.5 N Typical thrust of a Dual-Stage 4-Grid ion thruster.: 9.8 N One kilogram-force, nominal weight of a 1 kg (2.2 lb) object at sea level on Earth [15]
Newton's law of gravitation resembles Coulomb's law of electrical forces, which is used to calculate the magnitude of the electrical force arising between two charged bodies. Both are inverse-square laws, where force is inversely proportional to the square of the distance between the bodies. Coulomb's law has charge in place of mass and a ...
In physics, a force is considered a vector quantity. This means that it not only has a size (or magnitude) but also a direction in which it acts. We typically represent force with the symbol F in boldface, or sometimes, we place an arrow over the symbol to indicate its vector nature, like this: .
Unlike the other two fictitious forces, the centrifugal force always points radially outward from the axis of rotation of the rotating frame, with magnitude , where is the component of the position vector perpendicular to , and unlike the Coriolis force in particular, it is independent of the motion of the particle in the rotating frame.
The Coriolis force is important in external ballistics for calculating the trajectories of very long-range artillery shells. The most famous historical example was the Paris gun, used by the Germans during World War I to bombard Paris from a range of about 120 km (75 mi). The Coriolis force minutely changes the trajectory of a bullet, affecting ...
Assuming that the direction of the forces is known, the stress across M can be expressed simply by the single number , calculated simply with the magnitude of those forces, F and the cross sectional area, A. = Unlike normal stress, this simple shear stress is directed parallel to the cross-section considered, rather than perpendicular to it. [13]
In mathematics, the magnitude or size of a mathematical object is a property which determines whether the object is larger or smaller than other objects of the same kind. More formally, an object's magnitude is the displayed result of an ordering (or ranking) of the class of objects to which it belongs.