Search results
Results from the WOW.Com Content Network
Example of a binary max-heap with node keys being integers between 1 and 100. In computer science, a heap is a tree-based data structure that satisfies the heap property: In a max heap, for any given node C, if P is the parent node of C, then the key (the value) of P is greater than or equal to the key of C.
Push-Pop(heap: List<T>, item: T) -> T: if heap is not empty and heap[1] > item then: // < if min heap swap heap[1] and item _downheap(heap starting from index 1) return item A similar function can be defined for popping and then inserting, which in Python is called "heapreplace":
function FLOYD-BUILD-HEAP(h): for each index i from ⌊ / ⌋ down to 1 do: push-down(h, i) return h In this function, h is the initial array, whose elements may not be ordered according to the min-max heap property.
implicit k-d tree, a k-d tree defined by an implicit splitting function rather than an explicitly-stored set of splits; min/max k-d tree, a k-d tree that associates a minimum and maximum value with each of its nodes; Relaxed k-d tree, a k-d tree such that the discriminants in each node are arbitrary; Related variations:
The height of a node is the length of the longest downward path to a leaf from that node. The height of the root is the height of the tree. The depth of a node is the length of the path to its root (i.e., its root path). Thus the root node has depth zero, leaf nodes have height zero, and a tree with only a single node (hence both a root and ...
The cells of a PR quadtree, however, store a list of points that exist within the cell of a leaf. As mentioned previously, for trees following this decomposition strategy the height depends on the spatial distribution of the points. Like the point quadtree, the PR quadtree may also have a linear height when given a "bad" set.
The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology.It defines a large number of terms relating to algorithms and data structures.
A treap with alphabetic key and numeric max heap order The treap was first described by Raimund Seidel and Cecilia R. Aragon in 1989; [ 1 ] [ 2 ] its name is a portmanteau of tree and heap . It is a Cartesian tree in which each key is given a (randomly chosen) numeric priority.