Search results
Results from the WOW.Com Content Network
For high quality rotating drive systems, plunger motors are generally used. Whereas the speed of hydraulic pumps range from 1200 to 1800 rpm, the machinery to be driven by the motor often requires a much lower speed. This means that when an axial plunger motor (swept volume maximum 2 litres) is used, a gearbox is usually needed.
Cutting speed may be defined as the rate at the workpiece surface, irrespective of the machining operation used. A cutting speed for mild steel of 100 ft/min is the same whether it is the speed of the cutter passing over the workpiece, such as in a turning operation, or the speed of the cutter moving past a workpiece, such as in a milling operation.
The stall speed is defined as the highest speed at which the pump can turn when the output turbine is locked and full input torque (at the stall speed) is applied. Under stall conditions all of the engine's power at that speed would be dissipated in the fluid coupling as heat, possibly leading to damage.
A variable displacement pump is a device that converts mechanical energy to hydraulic (fluid) energy. [1] The displacement, or amount of fluid pumped per revolution of the pump's input shaft can be varied while the pump is running.
The speed and force of an actuator depend on its gearbox. The amount of force depends on the actuator’s speed. Lower speeds supply greater force because motor speed and force are constant. One of the basic differences between actuators is their stroke, which is defined by the length of the screw and shaft.
A U.S. judge overseeing an auction of shares in the parent of Venezuela-owned Citgo Petroleum on Monday agreed to reopen a data room to allow potential buyers to prepare new bids, a court document ...
Originally, this fluid was water; today, the wider use is in hydraulic devices. Myron F. Hill, who might be called the father of the gerotor, in his booklet "Kinematics of Ge-rotors", lists efforts by Galloway in 1787, by Nash and Tilden in 1879, by Cooley in 1900, by Professor Lilly of Dublin University in 1915, and by Feuerheerd in 1918.
Hydraulic hybrid vehicle systems consists of four main components: the working fluid, reservoir, pump/motor (in parallel hybrid system) or in-wheel motors and pumps (in series hybrid system), and accumulator. In some systems, a hydraulic transformer is also installed for converting output flow at any pressure with a very low power loss. [3]