enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Acetylene - Wikipedia

    en.wikipedia.org/wiki/Acetylene

    Acetylene (systematic name: ethyne) is the chemical compound with the formula C 2 H 2 and structure H−C≡C−H. It is a hydrocarbon and the simplest alkyne. [8] This colorless gas is widely used as a fuel and a chemical building block. It is unstable in its pure form and thus is usually handled as a solution. [9]

  3. Ethylene - Wikipedia

    en.wikipedia.org/wiki/Ethylene

    Ethylene (IUPAC name: ethene) is a hydrocarbon which has the formula C 2 H 4 or H 2 C=CH 2. It is a colourless, flammable gas with a faint "sweet and musky " odour when pure. [ 7 ] It is the simplest alkene (a hydrocarbon with carbon–carbon double bonds ).

  4. Alkyne - Wikipedia

    en.wikipedia.org/wiki/Alkyne

    The acidic hydrogen on terminal alkynes can be replaced by a variety of groups resulting in halo-, silyl-, and alkoxoalkynes. The carbanions generated by deprotonation of terminal alkynes are called acetylides. [5] Internal alkynes are also considerably more acidic than alkenes and alkanes, though not nearly as acidic as terminal alkynes.

  5. Hydrocarbon - Wikipedia

    en.wikipedia.org/wiki/Hydrocarbon

    Addition reactions apply to alkenes and alkynes. It is because they add reagents that they are called unsaturated. In this reaction a variety of reagents add "across" the pi-bond(s). Chlorine, hydrogen chloride, water, and hydrogen are illustrative reagents. Polymerization is a form of addition.

  6. Van der Waals constants (data page) - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_constants...

    Hydrogen: 0.2476 0.02661 Hydrogen bromide: 4.510 0.04431 Hydrogen chloride: 3.716 0.04081 Hydrogen cyanide [2] 11.29 0.0881 Hydrogen fluoride [2] 9.565 0.0739 Hydrogen iodide [2] 6.309 0.0530 Hydrogen selenide: 5.338 0.04637 Hydrogen sulfide: 4.490 0.04287 Isobutane [2] 13.32 0.1164 Iodobenzene: 33.52 0.1656 Krypton: 2.349 0.03978 Mercury: 8. ...

  7. Carbon–hydrogen bond - Wikipedia

    en.wikipedia.org/wiki/Carbon–hydrogen_bond

    A bond between a hydrogen atom and an sp 2 hybridised carbon atom is about 0.6% shorter than between hydrogen and sp 3 hybridised carbon. A bond between hydrogen and sp hybridised carbon is shorter still, about 3% shorter than sp 3 C-H. This trend is illustrated by the molecular geometry of ethane, ethylene and acetylene. [citation needed]

  8. Ethane - Wikipedia

    en.wikipedia.org/wiki/Ethane

    Although ethane is a greenhouse gas, it is much less abundant than methane, has a lifetime of only a few months compared to over a decade, [30] and is also less efficient at absorbing radiation relative to mass. In fact, ethane's global warming potential largely results from its conversion in the atmosphere to methane. [31]

  9. Wet electrons - Wikipedia

    en.wikipedia.org/wiki/Wet_electrons

    Hydrogen atoms on water or hydroxide (OH) can be involved in hydrogen bonds or be dangling. Wet electrons are primarily stabilized by the dangling atoms on OH, which is more acidic than water, but the dangling atoms on water also contribute to the stabilization. The process is akin to following the lowest elevation path between valleys with a ...