Ad
related to: machine learning in python textbook
Search results
Results from the WOW.Com Content Network
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
It is mostly used for numerical analysis, computational science, and machine learning. [6] C# can be used to develop high level machine learning models using Microsoft’s .NET suite. ML.NET was developed to aid integration with existing .NET projects, simplifying the process for existing software using the .NET platform.
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [494] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...
AIMA gives detailed information about the working of algorithms in AI. The book's chapters span from classical AI topics like searching algorithms and first-order logic, propositional logic and probabilistic reasoning to advanced topics such as multi-agent systems, constraint satisfaction problems, optimization problems, artificial neural networks, deep learning, reinforcement learning, and ...
Bayesian methods are introduced for probabilistic inference in machine learning. [1] 1970s 'AI winter' caused by pessimism about machine learning effectiveness. 1980s: Rediscovery of backpropagation causes a resurgence in machine learning research. 1990s: Work on Machine learning shifts from a knowledge-driven approach to a data-driven approach.
He joined Cogent Labs, a Japanese Deep Learning/AI company, in 2017. [4] He is a Machine Learning Engineering Manager at Mercari, Inc. [5] Cournapeau has also been involved in the development of other central numerical Python libraries: NumPy and SciPy. [6] [7]
Google JAX is a machine learning framework for transforming numerical functions. [1] [2] [3] It is described as bringing together a modified version of autograd (automatic obtaining of the gradient function through differentiation of a function) and TensorFlow's XLA (Accelerated Linear Algebra).
Ad
related to: machine learning in python textbook