enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Monoid (category theory) - Wikipedia

    en.wikipedia.org/wiki/Monoid_(category_theory)

    A monoid object in the category of monoids (with the direct product of monoids) is just a commutative monoid. This follows easily from the Eckmann–Hilton argument. A monoid object in the category of complete join-semilattices Sup (with the monoidal structure induced by the Cartesian product) is a unital quantale.

  3. Monoidal category - Wikipedia

    en.wikipedia.org/wiki/Monoidal_category

    K-Vect, the category of vector spaces over a field K, with the one-dimensional vector space K serving as the unit. Ab, the category of abelian groups, with the group of integers Z serving as the unit. For any commutative ring R, the category of R-algebras is monoidal with the tensor product of algebras as the product and R as the unit.

  4. Monoid - Wikipedia

    en.wikipedia.org/wiki/Monoid

    Function f : [Z] 3 → [Z] 6 given by [k] 3 ↦ [3k] 6 is a semigroup homomorphism, since [3k ⋅ 3l] 6 = [9kl] 6 = [3kl] 6. However, f([1] 3) = [3] 6 ≠ [1] 6, so a monoid homomorphism is a semigroup homomorphism between monoids that maps the identity of the first monoid to the identity of the second monoid and the latter condition cannot be ...

  5. Presentation of a monoid - Wikipedia

    en.wikipedia.org/wiki/Presentation_of_a_monoid

    M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories with Applications to Wreath Products and Graphs, De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, ISBN 3-11-015248-7. Ronald V. Book and Friedrich Otto, String-rewriting Systems, Springer, 1993, ISBN 0-387-97965-4, chapter 7, "Algebraic Properties"

  6. Graph product - Wikipedia

    en.wikipedia.org/wiki/Graph_product

    In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.

  7. Monoidal monad - Wikipedia

    en.wikipedia.org/wiki/Monoidal_monad

    That means a monad (,,) on a monoidal category (,,) together with coherence maps ,: and : satisfying three axioms that make an opmonoidal functor, and four more axioms that make the unit and the multiplication into opmonoidal natural transformations. Alternatively, an opmonoidal monad is a monad on a monoidal category such that the category of ...

  8. Kleisli category - Wikipedia

    en.wikipedia.org/wiki/Kleisli_category

    Let T, η, μ be a monad over a category C.The Kleisli category of C is the category C T whose objects and morphisms are given by = (), (,) = (,).That is, every morphism f: X → T Y in C (with codomain TY) can also be regarded as a morphism in C T (but with codomain Y).

  9. Grothendieck group - Wikipedia

    en.wikipedia.org/wiki/Grothendieck_group

    In mathematics, the Grothendieck group, or group of differences, [1] of a commutative monoid M is a certain abelian group.This abelian group is constructed from M in the most universal way, in the sense that any abelian group containing a homomorphic image of M will also contain a homomorphic image of the Grothendieck group of M.