Search results
Results from the WOW.Com Content Network
A syllogism (Ancient Greek: συλλογισμός, syllogismos, 'conclusion, inference') is a kind of logical argument that applies deductive reasoning to arrive at a conclusion based on two propositions that are asserted or assumed to be true.
A set of rules can be used to infer any valid conclusion if it is complete, while never inferring an invalid conclusion, if it is sound. A sound and complete set of rules need not include every rule in the following list, as many of the rules are redundant, and can be proven with the other rules.
In syllogistic logic, there are 256 possible ways to construct categorical syllogisms using the A, E, I, and O statement forms in the square of opposition. Of the 256, only 24 are valid forms. Of the 24 valid forms, 15 are unconditionally valid, and 9 are conditionally valid.
The rule states that a syllogism in which both premises are of form a or i (affirmative) cannot reach a conclusion of form e or o (negative). Exactly one of the premises must be negative to construct a valid syllogism with a negative conclusion. (A syllogism with two negative premises commits the related fallacy of exclusive premises.)
An example of a rule that is not effective in this sense is the infinitary ω-rule. [1] Popular rules of inference in propositional logic include modus ponens, modus tollens, and contraposition. First-order predicate logic uses rules of inference to deal with logical quantifiers.
[10] Formal logic is ... In the case of formal logic, they are known as rules of ... The syllogism "all cats are mortal; Socrates is mortal; therefore Socrates is a ...
Pages in category "Rules of inference" ... Hypothetical syllogism; L. List of valid argument forms; M. Material implication (rule of inference) Modus non excipiens;
The name "disjunctive syllogism" derives from its being a syllogism, a three-step argument, and the use of a logical disjunction (any "or" statement.) For example, "P or Q" is a disjunction, where P and Q are called the statement's disjuncts. The rule makes it possible to eliminate a disjunction from a logical proof. It is the rule that