Search results
Results from the WOW.Com Content Network
The gauche effect is very sensitive to solvent effects, due to the large difference in polarity between the two conformers.For example, 2,3-dinitro-2,3-dimethylbutane, which in the solid state exists only in the gauche conformation, prefers the gauche conformer in benzene solution by a ratio of 79:21, but in carbon tetrachloride, it prefers the anti conformer by a ratio of 58:42. [9]
The chair conformation is the most stable conformer. At 298 K (25 °C), 99.99% of all molecules in a cyclohexane solution adopt this conformation. The C–C ring of the chair conformation has the same shape as the 6-membered rings in the diamond cubic lattice. [7]: 16 This can be modeled as follows.
The staggered conformation is more stable by 12.5 kJ/mol than the eclipsed conformation, which is the energy maximum for ethane. In the eclipsed conformation the torsional angle is minimised. staggered conformation left, eclipsed conformation right in Newman projection
A methyl substituent has a significantly smaller A-value than a tert-butyl substituent; therefore the most stable conformation has the tert-butyl in the equatorial position. The utility of A-values can be generalized for use outside of cyclohexane conformations. A-values can help predict the steric effect of a substituent. In general, the ...
More complex molecules, such as butane, have more than one possible staggered conformation. The anti conformation of butane is approximately 0.9 kcal mol −1 (3.8 kJ mol −1) more stable than the gauche conformation. [1] Both of these staggered conformations are much more stable than the eclipsed conformations.
Two limiting conformations are important: eclipsed conformation and staggered conformation. The staggered conformation is 12.6 kJ/mol (3.0 kcal/mol) lower in energy (more stable) than the eclipsed conformation (the least stable). In highly branched alkanes, the bond angle may differ from the optimal value (109.5°) to accommodate bulky groups.
Rather than the strain that would normally occur in the close group proximity, the hydrogen bond stabilizes the conformation and makes it energetically much more favorable. This scenario occurs when the allylic substituent at the 1 position is a hydrogen bond donor (usually a hydroxyl ) and the substituent at the 3 position is a hydrogen bond ...
The most stable conformer of 1,3-butadiene is the s-trans conformation, in which the molecule is planar, with the two pairs of double bonds facing opposite directions. This conformation is most stable because orbital overlap between double bonds is maximized, allowing for maximum conjugation, while steric effects are minimized.