Search results
Results from the WOW.Com Content Network
In analytical chemistry, the detection limit, lower limit of detection, also termed LOD for limit of detection or analytical sensitivity (not to be confused with statistical sensitivity), is the lowest quantity of a substance that can be distinguished from the absence of that substance (a blank value) with a stated confidence level (generally 99%).
A calibration curve plot showing limit of detection (LOD), limit of quantification (LOQ), dynamic range, and limit of linearity (LOL).. In analytical chemistry, a calibration curve, also known as a standard curve, is a general method for determining the concentration of a substance in an unknown sample by comparing the unknown to a set of standard samples of known concentration. [1]
All analytical procedures should be validated. Identification tests are conducted to ensure the identity of an analyte in a sample through comparison of the sample to a reference standard through methods such as spectrum, chromatographic behavior, and chemical reactivity. [5] Impurity testing can either be a quantitative test or a limit test.
An example of a Levey–Jennings chart with upper and lower limits of one and two times the standard deviation. A Levey–Jennings chart is a graph that quality control data is plotted on to give a visual indication whether a laboratory test is working well. The distance from the mean is measured in standard deviations.
Method Reporting Limits (MRL) are generally about ten times the MDL. There is a formula for computing the MRL based on the MDL for EPA compliance labs, but I don't recall exactly what it is. Reporting results near the MDL aren't a sticky issue just because of the LOQ, but also because the claimed uncertainty for a method begins to break down at ...
This method is most useful when there are only two reactants. One reactant (A) is chosen, and the balanced chemical equation is used to determine the amount of the other reactant (B) necessary to react with A. If the amount of B actually present exceeds the amount required, then B is in excess and A is the limiting reagent.
An assay (analysis) is never an isolated process, as it must be accompanied with pre- and post-analytic procedures. Both the communication order (the request to perform an assay plus related information) and the handling of the specimen itself (the collecting, documenting, transporting, and processing done before beginning the assay) are pre-analytic steps.
To apply this method, analysts prepare multiple solutions containing equal amounts of unknown and spike them with varying concentrations of the analyte. The amount of unknown and the total volume are the same across the standards and the only difference between the standards is the amount of analyte spiked.