Search results
Results from the WOW.Com Content Network
Due to the low thermal inertia of Mars' thin CO 2 atmosphere and the short radiative timescales, katabatic winds on Mars are two to three times stronger than those on Earth and take place on large areas of land with weak ambient winds, sloping terrain, and near-surface temperature inversions or radiative cooling of the surface and atmosphere. [56]
Volcanic structures and landforms cover large parts of the Martian surface. The most conspicuous volcanoes on Mars are located in Tharsis and Elysium. Geologists think one of the reasons volcanoes on Mars were able to grow so large is that Mars has fewer tectonic boundaries in comparison to Earth. [64]
Many places on Mars show rocks arranged in layers. Rock can form layers in a variety of ways. Volcanoes, wind, or water can produce layers. [8] A detailed discussion of layering with many Martian examples can be found in Sedimentary Geology of Mars. [9] Layers can be hardened by the action of groundwater.
[31] [32] Mars has twice as much iron oxide in its outer layer as Earth does, despite their supposed similar origin. It is thought that Earth, being hotter, transported much of the iron downwards in the 1,800 kilometres (1,118 mi) deep, 3,200 °C (5,792 °F ), lava seas of the early planet, while Mars, with a lower lava temperature of 2,200 °C ...
[1] [2] [3] Areography is mainly focused on what is called physical geography on Earth; that is the distribution of physical features across Mars and their cartographic representations. In April 2023, The New York Times reported an updated global map of Mars based on images from the Hope spacecraft . [ 4 ]
The Moon and Mars Will Form a Rare Conjunction Tonight. Sydney Wingfield. November 20, 2024 at 11:20 AM. ... 2025, when Earth passes between Mars and the sun, a phenomenon known as opposition.
A first attempt at a Mars general circulation model was created by Leovy and Mintz who used an Earth model and adapted it to Martian conditions. This preliminary model had the capability to predict atmospheric condensation of carbon dioxide and the presence of transient baroclinic waves in the winter mod-latitudes. [ 4 ]
The atmosphere of Mars is colder than Earth’s owing to the larger distance from the Sun, receiving less solar energy and has a lower effective temperature, which is about 210 K (−63 °C; −82 °F). [2] The average surface emission temperature of Mars is just 215 K (−58 °C; −73 °F), which is comparable to inland Antarctica.