enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Redox - Wikipedia

    en.wikipedia.org/wiki/Redox

    Redox (/ ˈ r ɛ d ɒ k s / RED-oks, / ˈ r iː d ɒ k s / REE-doks, reductionoxidation [2] or oxidationreduction [3]: 150 ) is a type of chemical reaction in which the oxidation states of the reactants change. [4] Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...

  3. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    The second half of glycolysis is known as the pay-off phase, characterised by a net gain of the energy-rich molecules ATP and NADH. [5] Since glucose leads to two triose sugars in the preparatory phase, each reaction in the pay-off phase occurs twice per glucose molecule. This yields 2 NADH molecules and 4 ATP molecules, leading to a net gain ...

  4. Carbohydrate catabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_catabolism

    These carbon molecules are oxidized into NADH and ATP. For the glucose molecule to oxidize into pyruvate, an input of ATP molecules is required. This is known as the investment phase, in which a total of two ATP molecules are consumed. At the end of glycolysis, the total yield of ATP is four molecules, but the net gain is two ATP molecules.

  5. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    From the complete oxidation of one glucose molecule to carbon dioxide and oxidation of all the reduced coenzymes. Although there is a theoretical yield of 38 ATP molecules per glucose during cellular respiration, such conditions are generally not realized because of losses such as the cost of moving pyruvate (from glycolysis), phosphate, and ...

  6. Reduction potential - Wikipedia

    en.wikipedia.org/wiki/Reduction_potential

    In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...

  7. Glucose oxidase - Wikipedia

    en.wikipedia.org/wiki/Glucose_oxidase

    Glucose oxidase catalyzes the oxidation of β-D-glucose into D-glucono-1,5-lactone, which then hydrolyzes into gluconic acid. In order to work as a catalyst, GOx requires a coenzyme, flavin adenine dinucleotide (FAD). FAD is a common component in biological oxidation-reduction reactions. Redox reactions involve a gain or loss of electrons from ...

  8. Malate–aspartate shuttle - Wikipedia

    en.wikipedia.org/wiki/Malate–aspartate_shuttle

    Compare this to the glycerol 3-phosphate shuttle, which reduces FAD + to produce FADH 2, donates electrons to the quinone pool in the electron transport chain, and is capable of generating only 2 ATPs per NADH generated in glycolysis (ultimately resulting in a net gain of 36 ATPs per glucose metabolized).

  9. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    Glycolysis produces only 2 ATP molecules, but somewhere between 30 and 36 ATPs are produced by the oxidative phosphorylation of the 10 NADH and 2 succinate molecules made by converting one molecule of glucose to carbon dioxide and water, [6] while each cycle of beta oxidation of a fatty acid yields about 14 ATPs. These ATP yields are ...