enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Relativistic Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Relativistic_Doppler_effect

    The relativistic Doppler effect is the change in frequency, wavelength and amplitude [1] of light, caused by the relative motion of the source and the observer (as in the classical Doppler effect, first proposed by Christian Doppler in 1842 [2]), when taking into account effects described by the special theory of relativity.

  3. Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Doppler_effect

    [1] [2] [3] The Doppler effect is named after the physicist Christian Doppler, who described the phenomenon in 1842. A common example of Doppler shift is the change of pitch heard when a vehicle sounding a horn approaches and recedes from an observer. Compared to the emitted frequency, the received frequency is higher during the approach ...

  4. Relativistic beaming - Wikipedia

    en.wikipedia.org/wiki/Relativistic_beaming

    Only a single jet is visible in M87. Two jets are visible in 3C 31.. In physics, relativistic beaming (also known as Doppler beaming, Doppler boosting, or the headlight effect) is the process by which relativistic effects modify the apparent luminosity of emitting matter that is moving at speeds close to the speed of light.

  5. Doppler broadening - Wikipedia

    en.wikipedia.org/wiki/Doppler_broadening

    A particular case is the thermal Doppler broadening due to the thermal motion of the particles. Then, the broadening depends only on the frequency of the spectral line, the mass of the emitting particles, and their temperature , and therefore can be used for inferring the temperature of an emitting (or absorbing) body being spectroscopically ...

  6. Relativistic aberration - Wikipedia

    en.wikipedia.org/wiki/Relativistic_aberration

    A consequence is that a forward observer should normally be expected to intercept a greater proportion of the object's light than a rearward one; this concentration of light in the object's forward direction is referred to as the "searchlight" or "headlight" effect. Light from a relativistic source becomes more forward directed and Doppler ...

  7. Black-body radiation - Wikipedia

    en.wikipedia.org/wiki/Black-body_radiation

    The relativistic Doppler effect causes a shift in the frequency f of light originating from a source that is moving in relation to the observer, so that the wave is observed to have frequency f': ′ = ⁡ /, where v is the velocity of the source in the observer's rest frame, θ is the angle between the velocity vector and the observer-source ...

  8. Electrophoretic light scattering - Wikipedia

    en.wikipedia.org/wiki/Electrophoretic_light...

    The frequency of light scattered by particles undergoing electrophoresis is shifted by the amount of the Doppler effect, from that of the incident light, :. The shift can be detected by means of heterodyne optics in which the scattering light is mixed with the reference light.

  9. Mössbauer spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Mössbauer_spectroscopy

    The Chemical Isomer shift as described here does not change with temperature, however, Mössbauer spectra do have a temperature sensitivity due to a relativistic effect known as the second-order Doppler effect. Generally, the impact of this effect is small, and the IUPAC standard allows the Isomer Shift to be reported without correcting for it. [7]