Search results
Results from the WOW.Com Content Network
The SI unit of molar absorption coefficient is the square metre per mole (m 2 /mol), but in practice, quantities are usually expressed in terms of M −1 ⋅cm −1 or L⋅mol −1 ⋅cm −1 (the latter two units are both equal to 0.1 m 2 /mol).
absorption coefficient is essentially (but not quite always) synonymous with attenuation coefficient; see attenuation coefficient for details; molar absorption coefficient or molar extinction coefficient , also called molar absorptivity , is the attenuation coefficient divided by molarity (and usually multiplied by ln(10), i.e., decadic); see ...
The absorption coefficient can, in turn, be written as a product of either a molar absorptivity of the absorber, ε, and the concentration c of absorbing species in the material, or an absorption cross section, σ, and the (number) density N of absorbers. (see Beer Lambert Law link for full derivation)
ε is the molar attenuation coefficient of that material, and; c(z) is the molar concentration of that material at z. If c(z) is uniform along the path, the relation becomes =. The use of the term "molar absorptivity" for molar attenuation coefficient is discouraged. [1]
The Molar attenuation coefficient (also called "molar absorptivity"), which is the absorption coefficient divided by molarity (see also Beer–Lambert law) The mass attenuation coefficient (also called "mass extinction coefficient"), which is the absorption coefficient divided by density; The absorption cross section and scattering cross ...
The attenuation coefficient of a volume, denoted μ, is defined as [6] =, where Φ e is the radiant flux;; z is the path length of the beam.; Note that for an attenuation coefficient which does not vary with z, this equation is solved along a line from =0 to as:
Calculation of the true sorptivity required numerical iterative procedures dependent on soil water content and diffusivity. John R. Philip (1969) showed that sorptivity can be determined from horizontal infiltration where water flow is mostly controlled by capillary absorption: I = S t {\displaystyle I=S{\sqrt {t}}} where S is sorptivity and I ...
The spectrum of pure bilirubin is known, so the molar attenuation coefficient ε is known. Measurements of decadic attenuation coefficient μ 10 are made at one wavelength λ that is nearly unique for bilirubin and at a second wavelength in order to correct for possible interferences.