Search results
Results from the WOW.Com Content Network
Convolution has applications that include probability, statistics, acoustics, spectroscopy, signal processing and image processing, geophysics, engineering, physics, computer vision and differential equations. [1] The convolution can be defined for functions on Euclidean space and other groups (as algebraic structures).
In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain ) equals point-wise multiplication in the other domain (e.g., frequency domain ).
In probability theory, the probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density ...
A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
Convolution of probability distributions; Convolution reverb, a process used for digitally simulating the reverberation of a physical or virtual space; Convolution random number generator, a pseudo-random number sampling method that can be used to generate random variates from certain classes of probability distribution
The relationship between y(t) and u(t), the system, is usually given implicitly, by a differential equation, which is easily resolved into the from y = Hu in Laplace domain. The inverse Laplace brings solution back to time domain and it is a convolution between impulse response h(t) and u(t).
In mathematics, symmetric convolution is a special subset of convolution operations in which the convolution kernel is symmetric across its zero point. Many common convolution-based processes such as Gaussian blur and taking the derivative of a signal in frequency-space are symmetric and this property can be exploited to make these convolutions easier to evaluate.