Search results
Results from the WOW.Com Content Network
10 nanoseconds – half-life of lithium-12; 12 nanoseconds – mean lifetime of a charged K meson [3] 20–40 nanoseconds – time of fusion reaction in a hydrogen bomb; 30 nanoseconds – half-life of carbon-21; 77 nanoseconds – a sixth (a 60th of a 60th of a 60th of a 60th of a second) 96 nanoseconds – Gigabit Ethernet Interpacket gap
Time unit used for sedimentation rates (usually of proteins). picosecond: 10 −12 s: One trillionth of a second. nanosecond: 10 −9 s: One billionth of a second. Time for molecules to fluoresce. shake: 10 −8 s: 10 nanoseconds, also a casual term for a short period of time. microsecond: 10 −6 s: One millionth of a second. Symbol is μs ...
Clock time and calendar time have duodecimal or sexagesimal orders of magnitude rather than decimal, e.g., a year is 12 months, and a minute is 60 seconds. The smallest meaningful increment of time is the Planck time―the time light takes to traverse the Planck distance, many decimal orders of magnitude smaller than a second. [1]
A nanosecond (ns) is a unit of time in the International System of Units (SI) equal to one billionth of a second, that is, 1 / 1 000 000 000 of a second, or 10 −9 seconds. The term combines the SI prefix nano-indicating a 1 billionth submultiple of an SI unit (e.g. nanogram, nanometre, etc.) and second, the primary unit of time in the SI.
The measurement of time is unique in SI in that while the second is the base unit, and measurements of time smaller than a second use prefixed units smaller than a second (e.g. microsecond, nanosecond, etc.), measurements larger than a second instead use traditional divisions, including the sexagesimal-based minute and hour as well as the less ...
1 picosecond – time taken by light in vacuum to travel approximately 0.30 mm; 1 picosecond – half-life of a bottom quark ~1 picosecond – lifetime of a single H 3 O + ion in water at 20 °C [3] picoseconds to nanoseconds – phenomena observable by dielectric spectroscopy
This makes time interval arithmetic much easier. Time values from these systems do not suffer the ambiguity that strictly conforming POSIX systems or NTP-driven systems have. In these systems it is necessary to consult a table of leap seconds to correctly convert between UTC and the pseudo-Unix-time representation.
Software timekeeping systems vary widely in the resolution of time measurement; some systems may use time units as large as a day, while others may use nanoseconds.For example, for an epoch date of midnight UTC (00:00) on 1 January 1900, and a time unit of a second, the time of the midnight (24:00) between 1 January 1900 and 2 January 1900 is represented by the number 86400, the number of ...