enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Medcouple - Wikipedia

    en.wikipedia.org/wiki/Medcouple

    It is defined as a scaled median difference between the left and right half of a distribution. Its robustness makes it suitable for identifying outliers in adjusted boxplots. [2] [3] Ordinary box plots do not fare well with skew distributions, since they label the longer unsymmetrical tails as outliers. Using the medcouple, the whiskers of a ...

  3. Grubbs's test - Wikipedia

    en.wikipedia.org/wiki/Grubbs's_test

    In statistics, Grubbs's test or the Grubbs test (named after Frank E. Grubbs, who published the test in 1950 [1]), also known as the maximum normalized residual test or extreme studentized deviate test, is a test used to detect outliers in a univariate data set assumed to come from a normally distributed population.

  4. Functional boxplot - Wikipedia

    en.wikipedia.org/wiki/Functional_boxplot

    The fences are obtained by inflating the envelope of the 50% central region by 1.5 times the height of the 50% central region. Any observations outside the fences are flagged as potential outliers. When each observation is simply a point, the functional boxplot degenerates to a classical boxplot, and it is different from the pointwise boxplots.

  5. Box plot - Wikipedia

    en.wikipedia.org/wiki/Box_plot

    Figure 2. Box-plot with whiskers from minimum to maximum Figure 3. Same box-plot with whiskers drawn within the 1.5 IQR value. A boxplot is a standardized way of displaying the dataset based on the five-number summary: the minimum, the maximum, the sample median, and the first and third quartiles.

  6. Outlier - Wikipedia

    en.wikipedia.org/wiki/Outlier

    Box plot of data from the Michelson–Morley experiment displaying four outliers in the middle column, as well as one outlier in the first column. In statistics , an outlier is a data point that differs significantly from other observations.

  7. Interquartile range - Wikipedia

    en.wikipedia.org/wiki/Interquartile_range

    Box-and-whisker plot with four mild outliers and one extreme outlier. In this chart, outliers are defined as mild above Q3 + 1.5 IQR and extreme above Q3 + 3 IQR. The interquartile range is often used to find outliers in data. Outliers here are defined as observations that fall below Q1 − 1.5 IQR or above Q3 + 1.5 IQR.

  8. Anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Anomaly_detection

    In data analysis, anomaly detection (also referred to as outlier detection and sometimes as novelty detection) is generally understood to be the identification of rare items, events or observations which deviate significantly from the majority of the data and do not conform to a well defined notion of normal behavior. [1]

  9. Random sample consensus - Wikipedia

    en.wikipedia.org/wiki/Random_sample_consensus

    Random sample consensus (RANSAC) is an iterative method to estimate parameters of a mathematical model from a set of observed data that contains outliers, when outliers are to be accorded no influence [clarify] on the values of the estimates. Therefore, it also can be interpreted as an outlier detection method. [1]