Search results
Results from the WOW.Com Content Network
The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. [ 1 ] [ 2 ] [ 3 ] The Doppler effect is named after the physicist Christian Doppler , who described the phenomenon in 1842.
The relativistic Doppler effect is the change in frequency, wavelength and amplitude [1] of light, caused by the relative motion of the source and the observer (as in the classical Doppler effect, first proposed by Christian Doppler in 1842 [2]), when taking into account effects described by the special theory of relativity.
A diagram of the electromagnetic spectrum, showing various properties across the range of frequencies and wavelengths. The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band.
§ 2 Doppler observes that colour is a manifestation of the frequency of the light wave, in the eye of the beholder. He describes his principle that a frequency shift occurs when the source or the observer moves. A ship meets waves at a faster rate when sailing against the waves than when sailing along with them. The same goes for sound and light.
Only a single jet is visible in M87. Two jets are visible in 3C 31.. In physics, relativistic beaming (also known as Doppler beaming, Doppler boosting, or the headlight effect) is the process by which relativistic effects modify the apparent luminosity of emitting matter that is moving at speeds close to the speed of light.
Early Doppler radars included CW, but these quickly led to the development of frequency modulated continuous wave radar, which sweeps the transmitter frequency to encode and determine range. With the advent of digital techniques, Pulse-Doppler radars (PD) became light enough for aircraft use, and Doppler processors for coherent pulse radars ...
where c is the speed of light. In the classical Doppler effect, the frequency of the source is not modified, but the recessional motion causes the illusion of a lower frequency. A more complete treatment of the Doppler redshift requires considering relativistic effects associated with motion of sources close to the speed of light.
Regardless, radars that employ the technique are universally coherent, with a very stable radio frequency, and the pulse packets may also be used to make measurements of the Doppler shift (a velocity-dependent modification of the apparent radio frequency), especially when the PRFs are in the hundreds-of-kilohertz range. Radars exploiting ...