Search results
Results from the WOW.Com Content Network
When V, W are finite-dimensional vector spaces and are viewed as algebraic varieties, then a polynomial mapping is precisely a morphism of algebraic varieties. One fundamental outstanding question regarding polynomial mappings is the Jacobian conjecture, which concerns the sufficiency of a polynomial mapping to be invertible.
This is called Euclidean division, division with remainder or polynomial long division and shows that the ring F[x] is a Euclidean domain. Analogously, prime polynomials (more correctly, irreducible polynomials) can be defined as non-zero polynomials which cannot be factorized into the product of two non-constant polynomials.
(t maps to x) where ¯ is the polynomial function defined by f. The resulting map is injective if and only if R is infinite. Given a non-constant monic polynomial f in R[t], there exists a ring S containing R such that f is a product of linear factors in S[t]. [38] Let k be an algebraically closed field.
The imaginary exponential function () maps the real numbers to the circle group (see Euler's formula#Topological interpretation).A numerical sequence (()) where is a polynomial function with real coefficients, and is an integer variable, is a type of trigonometric polynomial, called a "polynomial sequence" for the purposes of the nilsequence theory.
That is, a regular map : is the same as the restriction of a polynomial map whose components satisfy the defining equations of . More generally, a map f : X → Y between two varieties is regular at a point x if there is a neighbourhood U of x and a neighbourhood V of f ( x ) such that f ( U ) ⊂ V and the restricted function f : U → V is ...
The concept of the Jacobson radical of a ring; that is, the intersection of all right (left) annihilators of simple right (left) modules over a ring, is one example. The fact that the Jacobson radical can be viewed as the intersection of all maximal right (left) ideals in the ring, shows how the internal structure of the ring is reflected by ...
This polynomial is further reduced to = + + which is shown in blue and yields a zero of −5. The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were ...
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.