enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Irrationality measure - Wikipedia

    en.wikipedia.org/wiki/Irrationality_measure

    Rational numbers have irrationality exponent 1, while (as a consequence of Dirichlet's approximation theorem) every irrational number has irrationality exponent at least 2. On the other hand, an application of Borel-Cantelli lemma shows that almost all numbers, including all algebraic irrational numbers , have an irrationality exponent exactly ...

  3. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    Dov Jarden gave a simple non-constructive proof that there exist two irrational numbers a and b, such that a b is rational: [28] [29] Consider √ 22; if this is rational, then take a = b = √ 2. Otherwise, take a to be the irrational number22 and b = √ 2. Then a b = (√ 22) √ 2 = √ 22 · √ 2 = √ 2 2 = 2 ...

  4. Dirichlet's approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_approximation...

    This shows that any irrational number has irrationality measure at least 2. The Thue–Siegel–Roth theorem says that, for algebraic irrational numbers, the exponent of 2 in the corollary to Dirichlet’s approximation theorem is the best we can do: such numbers cannot be approximated by any exponent greater than 2.

  5. Lagrange number - Wikipedia

    en.wikipedia.org/wiki/Lagrange_number

    Again this new bound is best possible in the new setting, but this time the number2 is the problem. If we don't allow √ 2 then we can increase the number on the right hand side of the inequality from 22 to √ 221 /5. Repeating this process we get an infinite sequence of numbers √ 5, 22, √ 221 /5, ... which converge to 3. [1]

  6. Dirichlet function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_function

    In fact, 1 ⁄ 2 is such an ε. Because the irrational numbers are dense in the reals, no matter what δ we choose we can always find an irrational z within δ of y, and f(z) = 0 is at least 1 ⁄ 2 away from 1. If y is irrational, then f(y) = 0.

  7. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    Gerard of Cremona (c. 1150), Fibonacci (1202), and then Robert Recorde (1551) all used the term to refer to unresolved irrational roots, that is, expressions of the form , in which and are integer numerals and the whole expression denotes an irrational number. [6] Irrational numbers of the form , where is rational, are called pure quadratic ...

  8. Approximations of π - Wikipedia

    en.wikipedia.org/wiki/Approximations_of_π

    PiFast can also compute other irrational numbers like e and √ 2. It can also work at lesser efficiency with very little memory (down to a few tens of megabytes to compute well over a billion (10 9) digits). This tool is a popular benchmark in the overclocking community. PiFast 4.4 is available from Stu's Pi page. PiFast 4.3 is available from ...

  9. Pell number - Wikipedia

    en.wikipedia.org/wiki/Pell_number

    In words: the first two numbers in the sequence are both 2, and each successive number is formed by adding twice the previous Pell–Lucas number to the Pell–Lucas number before that, or equivalently, by adding the next Pell number to the previous Pell number: thus, 82 is the companion to 29, and 82 = 2 × 34 + 14 = 70 + 12.