Search results
Results from the WOW.Com Content Network
The anti-Markovnikov rule can be illustrated using the addition of hydrogen bromide to isobutylene in the presence of benzoyl peroxide or hydrogen peroxide. The reaction of HBr with substituted alkenes was prototypical in the study of free-radical additions. Early chemists discovered that the reason for the variability in the ratio of ...
In 1869, a Russian chemist named Vladimir Markovnikov demonstrated that the addition of HBr to alkenes usually but not always resulted in a specific orientation. Markovnikov's rule, which stems from these observations, states that in the addition of HBr or another hydrogen halide to an alkene, the acidic proton will add to the less substituted carbon of the double bond. [3]
Can occur either in syn or anti addition fashion depending on the specific mechanism followed. If osmium tetroxide is used, hydroxide groups are added in syn fashion. If an epoxide mechanism is followed, hydroxide groups are added in an anti fashion. Neither Markovnikov or anti-Markovnikov because the substituents are the same. Hydrobromination
The reaction follows Markovnikov's rule (the hydroxy group will always be added to the more substituted carbon). The oxymercuration part of the reaction involves anti addition of OH group but the demercuration part of the reaction involves free radical mechanism and is not stereospecific, i.e. H and OH may be syn or anti to each other. [2] [3] [4]
For terminal olefins (or acetylenes), the regioselectivity of the process can be described as Markovnikov (addition of X at the substituted end) or anti-Markovnikov (addition of X at the unsubstituted end). Catalysts are frequently employed to control the chemo-, regio-, and stereoselectivity of hydrofunctionalization reactions.
In a free-radical addition, there are two chain propagation steps. In one, the adding radical attaches to a multiply-bonded precursor to give a radical with lesser bond order. In the other, the newly-formed radical product abstracts another substituent from the adding reagent to regenerate the adding radical. [3]: 743–744
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Free-radical additions can be initiated by light, heat or radical initiators, which form a thiyl radical species. The radical then propagates with an ene functional group via an anti-Markovnikov addition to form a carbon-centered radical. A chain-transfer step removes a hydrogen radical from a thiol, which can subsequently participate in ...