Search results
Results from the WOW.Com Content Network
Example of a binary max-heap with node keys being integers between 1 and 100. In computer science, a heap is a tree-based data structure that satisfies the heap property: In a max heap, for any given node C, if P is the parent node of C, then the key (the value) of P is greater than or equal to the key of C.
A binary heap is defined as a binary tree with two additional constraints: [3] Shape property: a binary heap is a complete binary tree; that is, all levels of the tree, except possibly the last one (deepest) are fully filled, and, if the last level of the tree is not complete, the nodes of that level are filled from left to right.
A pairing heap is either an empty heap, or a pairing tree consisting of a root element and a possibly empty list of pairing trees. The heap ordering property requires that parent of any node is no greater than the node itself. The following description assumes a purely functional heap that does not support the decrease-key operation.
A min-max heap is a complete binary tree containing alternating min (or even) and max (or odd) levels.Even levels are for example 0, 2, 4, etc, and odd levels are respectively 1, 3, 5, etc.
The heapsort algorithm can be divided into two phases: heap construction, and heap extraction. The heap is an implicit data structure which takes no space beyond the array of objects to be sorted; the array is interpreted as a complete binary tree where each array element is a node and each node's parent and child links are defined by simple arithmetic on the array indexes.
if not heap.currentTree().empty() tree = mergeTree(tree, heap.currentTree()) heap.addTree(tree) heap.next(); p.next(); q.next() Because each binomial tree in a binomial heap corresponds to a bit in the binary representation of its size, there is an analogy between the merging of two heaps and the binary addition of the sizes of the two heaps ...
The height-biased leftist tree was invented by Clark Allan Crane. [2] The name comes from the fact that the left subtree is usually taller than the right subtree. A leftist tree is a mergeable heap. When inserting a new node into a tree, a new one-node tree is created and merged into the existing tree.
It has three trees of degrees 0, 1 and 3. Three vertices are marked (shown in blue). Therefore, the potential of the heap is 9 (3 trees + 2 × (3 marked-vertices)). A Fibonacci heap is a collection of trees satisfying the minimum-heap property, that is, the key of a child is always greater than or equal to the key of the parent. This implies ...