Search results
Results from the WOW.Com Content Network
In mathematics, a stochastic matrix is a square matrix used to describe the transitions of a Markov chain. Each of its entries is a nonnegative real number representing a probability. [1] [2]: 10 It is also called a probability matrix, transition matrix, substitution matrix, or Markov matrix.
If the Markov chain is time-homogeneous, then the transition matrix P is the same after each step, so the k-step transition probability can be computed as the k-th power of the transition matrix, P k. If the Markov chain is irreducible and aperiodic, then there is a unique stationary distribution π. [41]
In probability theory, a transition-rate matrix (also known as a Q-matrix, [1] intensity matrix, [2] or infinitesimal generator matrix [3]) is an array of numbers describing the instantaneous rate at which a continuous-time Markov chain transitions between states.
A Markov arrival process is defined by two matrices, D 0 and D 1 where elements of D 0 represent hidden transitions and elements of D 1 observable transitions. The block matrix Q below is a transition rate matrix for a continuous-time Markov chain. [5]
For a continuous time Markov chain (CTMC) with transition rate matrix, if can be found such that for every pair of states and π i q i j = π j q j i {\displaystyle \pi _{i}q_{ij}=\pi _{j}q_{ji}} holds, then by summing over j {\displaystyle j} , the global balance equations are satisfied and π {\displaystyle \pi } is the stationary ...
where P(t) is the transition matrix of jump t, i.e., P(t) is the matrix such that entry (i,j) contains the probability of the chain moving from state i to state j in t steps. As a corollary, it follows that to calculate the transition matrix of jump t, it is sufficient to raise the transition matrix of jump one to the power of t, that is
Change-of-basis matrix, associated with a change of basis for a vector space. Stochastic matrix , a square matrix used to describe the transitions of a Markov chain . State-transition matrix , a matrix whose product with the state vector x {\displaystyle x} at an initial time t 0 {\displaystyle t_{0}} gives x {\displaystyle x} at a later time t ...
A basic property about an absorbing Markov chain is the expected number of visits to a transient state j starting from a transient state i (before being absorbed). This can be established to be given by the (i, j) entry of so-called fundamental matrix N, obtained by summing Q k for all k (from 0 to ∞).