enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.

  3. Bicentric quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Bicentric_quadrilateral

    If M, N are the midpoints of the diagonals, and E, F are the intersection points of the extensions of opposite sides, then the area of a bicentric quadrilateral is given by K = 2 M N ¯ ⋅ E I ¯ ⋅ F I ¯ E F ¯ {\displaystyle K={\frac {2{\overline {MN}}\cdot {\overline {EI}}\cdot {\overline {FI}}}{\overline {EF}}}}

  4. Megagon - Wikipedia

    en.wikipedia.org/wiki/Megagon

    In fact, for a circle the size of the Earth's equator, with a circumference of 40,075 kilometres, one edge of a megagon inscribed in such a circle would be slightly over 40 meters long. The difference between the perimeter of the inscribed megagon and the circumference of this circle comes to less than 1/16 millimeters.

  5. Pentadecagon - Wikipedia

    en.wikipedia.org/wiki/Pentadecagon

    He gives d (diagonal) with reflection lines through vertices, p with reflection lines through edges (perpendicular), and for the odd-sided pentadecagon i with mirror lines through both vertices and edges, and g for cyclic symmetry. a1 labels no symmetry. These lower symmetries allows degrees of freedoms in defining irregular pentadecagons.

  6. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    One diagonal crosses the midpoint of the other diagonal at a right angle, forming its perpendicular bisector. [9] (In the concave case, the line through one of the diagonals bisects the other.) One diagonal is a line of symmetry. It divides the quadrilateral into two congruent triangles that are mirror images of each other. [7]

  7. Newton–Gauss line - Wikipedia

    en.wikipedia.org/wiki/Newton–Gauss_line

    In geometry, the Newton–Gauss line (or Gauss–Newton line) is the line joining the midpoints of the three diagonals of a complete quadrilateral. The midpoints of the two diagonals of a convex quadrilateral with at most two parallel sides are distinct and thus determine a line, the Newton line. If the sides of such a quadrilateral are ...

  8. Concyclic points - Wikipedia

    en.wikipedia.org/wiki/Concyclic_points

    A polygon whose vertices are concyclic is called a cyclic polygon, and the circle is called its circumscribing circle or circumcircle. All concyclic points are equidistant from the center of the circle. Three points in the plane that do not all fall on a straight line are concyclic, so every triangle is a cyclic polygon, with a well-defined ...

  9. Diagonal - Wikipedia

    en.wikipedia.org/wiki/Diagonal

    The diagonals of a cube with side length 1. AC' (shown in blue) is a space diagonal with length , while AC (shown in red) is a face diagonal and has length .. In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge.