Search results
Results from the WOW.Com Content Network
Portrait of William Lawrence Bragg taken when he was around 40 years old. Sir William Lawrence Bragg (31 March 1890 – 1 July 1971), known as Lawrence Bragg, was an Australian-born British physicist and X-ray crystallographer, discoverer (1912) of Bragg's law of X-ray diffraction, which is basic for the determination of crystal structure. [3]
Free-electron lasers have been developed for use in X-ray diffraction and crystallography. [27] These are the brightest X-ray sources currently available; with the X-rays coming in femtosecond bursts. The intensity of the source is such that atomic resolution diffraction patterns can be resolved for crystals otherwise too small for collection.
An X-ray diffraction pattern of a crystallized enzyme. The pattern of spots (reflections) and the relative strength of each spot (intensities) can be used to determine the structure of the enzyme. The relative intensities of the reflections provides information to determine the arrangement of molecules within the crystal in atomic detail.
The photo-absorption strongly depends on the atomic number of the material and the X-ray energy. Several centimeter thick volumes can be accessed in steel and millimeters in lead containing samples. No radiation damage of the sample, which can pin incommensurations or destroy the chemical compound to be analyzed.
The first X-ray diffraction experiment was conducted in 1912 by Max von Laue, [7] while electron diffraction was first realized in 1927 in the Davisson–Germer experiment [8] and parallel work by George Paget Thomson and Alexander Reid. [9] These developed into the two main branches of crystallography, X-ray crystallography and electron ...
A year later, X-ray diffraction was further applied to visualize the three-dimensional structure of an unstained human chromosome. [20] X-ray microscopy has thus shown its great ability to circumvent the diffractive limit of classic light microscopes; however, further enhancement of the resolution is limited by detector pixels, optical ...
X-ray optics is the branch of optics dealing with X-rays, rather than visible light.It deals with focusing and other ways of manipulating the X-ray beams for research techniques such as X-ray diffraction, X-ray crystallography, X-ray fluorescence, small-angle X-ray scattering, X-ray microscopy, X-ray phase-contrast imaging, and X-ray astronomy.
X-ray reflectivity is an analytical technique for determining thickness, roughness, and density of single layer and multilayer thin films. Wide-angle X-ray scattering (WAXS), a technique concentrating on scattering angles 2θ larger than 5°. Spectrum of various inelastic scattering processes that can be probed with inelastic X-ray scattering ...