enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kuratowski's theorem - Wikipedia

    en.wikipedia.org/wiki/Kuratowski's_theorem

    A subdivision of a graph is a graph formed by subdividing its edges into paths of one or more edges. Kuratowski's theorem states that a finite graph G {\displaystyle G} is planar if it is not possible to subdivide the edges of K 5 {\displaystyle K_{5}} or K 3 , 3 {\displaystyle K_{3,3}} , and then possibly add additional edges and vertices, to ...

  3. Grundy number - Wikipedia

    en.wikipedia.org/wiki/Grundy_number

    Zaker (2006) defines a sequence of graphs called t-atoms, with the property that a graph has Grundy number at least t if and only if it contains a t-atom.Each t-atom is formed from an independent set and a (t − 1)-atom, by adding one edge from each vertex of the (t − 1)-atom to a vertex of the independent set, in such a way that each member of the independent set has at least one edge ...

  4. 3-dimensional matching - Wikipedia

    en.wikipedia.org/wiki/3-dimensional_matching

    3-dimensional matchings. (a) Input T. (b)–(c) Solutions. In the mathematical discipline of graph theory, a 3-dimensional matching is a generalization of bipartite matching (also known as 2-dimensional matching) to 3-partite hypergraphs, which consist of hyperedges each of which contains 3 vertices (instead of edges containing 2 vertices in a usual graph).

  5. Metric dimension (graph theory) - Wikipedia

    en.wikipedia.org/.../Metric_dimension_(graph_theory)

    Graphs with bounded cyclomatic number, vertex cover number or max leaf number all have bounded treewidth, however it is an open problem to determine the complexity of the metric dimension problem even on graphs of treewidth 2, that is, series–parallel graphs. [9]

  6. Greedy coloring - Wikipedia

    en.wikipedia.org/wiki/Greedy_coloring

    In the study of graph coloring problems in mathematics and computer science, a greedy coloring or sequential coloring [1] is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the graph in sequence and assigns each vertex its first available color. Greedy colorings can be found in linear time, but ...

  7. Forbidden subgraph problem - Wikipedia

    en.wikipedia.org/wiki/Forbidden_subgraph_problem

    In extremal graph theory, the forbidden subgraph problem is the following problem: given a graph , find the maximal number of edges ⁡ (,) an -vertex graph can have such that it does not have a subgraph isomorphic to .

  8. Ruzsa–Szemerédi problem - Wikipedia

    en.wikipedia.org/wiki/Ruzsa–Szemerédi_problem

    The Ruzsa–Szemerédi problem asks for the answer to these equivalent questions. To convert the bipartite graph induced matching problem into the unique triangle problem, add a third set of vertices to the graph, one for each induced matching, and add edges from vertices and of the bipartite graph to vertex in this third set whenever bipartite ...

  9. Complete bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Complete_bipartite_graph

    A planar graph cannot contain K 3,3 as a minor; an outerplanar graph cannot contain K 3,2 as a minor (These are not sufficient conditions for planarity and outerplanarity, but necessary). Conversely, every nonplanar graph contains either K 3,3 or the complete graph K 5 as a minor; this is Wagner's theorem. [9] Every complete bipartite graph.

  1. Related searches graph theory gfg problems practice questions 5th math answers 3rd

    graph theory gfg problems practice questions 5th math answers 3rd grade