Search results
Results from the WOW.Com Content Network
The prevailing view in the 1940s and 1950s was that P availability was maximized near neutrality (soil pH 6.5–7.5), and decreased at higher and lower pH. [29] [30] Interactions of phosphorus with pH in the moderately to slightly acidic range (pH 5.5–6.5) are, however, far more complex than is suggested by this view. Laboratory tests ...
Buffer capacity falls to 33% of the maximum value at pH = pK a ± 1, to 10% at pH = pK a ± 1.5 and to 1% at pH = pK a ± 2. For this reason the most useful range is approximately pK a ± 1. When choosing a buffer for use at a specific pH, it should have a pK a value as close as possible to that pH. [2]
Acid-neutralizing capacity or ANC in short is a measure for the overall buffering capacity against acidification of a solution, e.g. surface water or soil water.. ANC is defined as the difference between cations of strong bases and anions of strong acids (see below), or dynamically as the amount of acid needed to change the pH value from the sample's value to a chosen different value. [1]
Pourbaix diagram of iron. [1] The Y axis corresponds to voltage potential. In electrochemistry, and more generally in solution chemistry, a Pourbaix diagram, also known as a potential/pH diagram, E H –pH diagram or a pE/pH diagram, is a plot of possible thermodynamically stable phases (i.e., at chemical equilibrium) of an aqueous electrochemical system.
Base-cation saturation ratio (BCSR) is a method of interpreting soil test results that is widely used in sustainable agriculture, supported by the National Sustainable Agriculture Information Service (ATTRA) [1] and claimed to be successfully in use on over a million acres (4,000 km 2) of farmland worldwide.
The ocean contains a natural buffer system to maintain a pH between 8.1 and 8.3. [11] The oceans buffer system is known as the carbonate buffer system. [ 12 ] The carbonate buffer system is a series of reactions that uses carbonate as a buffer to convert C O 2 {\displaystyle \mathrm {CO_{2}} } into bicarbonate . [ 12 ]
The degree to which a given amount of lime per unit of soil volume will increase soil pH depends on the buffer capacity of the soil (this is generally related to soil cation exchange capacity or CEC). Most acid soils are saturated with aluminum rather than hydrogen ions. Soil acidity generally results from hydrolysis of aluminum. [4]
Soil mineral components belonging to a given textural class may thus share properties linked to their specific surface area (e.g. moisture retention) but not those linked to their chemical composition (e.g. cation exchange capacity). Soil components larger than 2.0 mm (0.079 in) are classed as rock and gravel and are removed before determining ...