Search results
Results from the WOW.Com Content Network
For a typical second-order reaction with rate equation = [] [], if the concentration of reactant B is constant then = [] [] = ′ [], where the pseudo–first-order rate constant ′ = []. The second-order rate equation has been reduced to a pseudo–first-order rate equation, which makes the treatment to obtain an integrated rate equation much ...
Language links are at the top of the page across from the title.
A pseudorandom binary sequence (PRBS), pseudorandom binary code or pseudorandom bitstream is a binary sequence that, while generated with a deterministic algorithm, is difficult to predict [1] and exhibits statistical behavior similar to a truly random sequence.
Although these equations were derived to assist with predicting the time course of drug action, [1] the same equation can be used for any substance or quantity that is being produced at a measurable rate and degraded with first-order kinetics. Because the equation applies in many instances of mass balance, it has very broad applicability in ...
It can be shown that if is a pseudo-random number generator for the uniform distribution on (,) and if is the CDF of some given probability distribution , then is a pseudo-random number generator for , where : (,) is the percentile of , i.e. ():= {: ()}. Intuitively, an arbitrary distribution can be simulated from a simulation of the standard ...
[A] can provide intuitive insight about the order of each of the reagents. If plots of v / [A] vs. [B] overlay for multiple experiments with different-excess, the data are consistent with a first-order dependence on [A]. The same could be said for a plot of v / [B] vs. [A]; overlay is consistent with a first-order dependence on [B].
First, be sure to get annual check ups and take care of your heart, says Dr. Kaiser. You can also focus on following a heart-healthy diet like the Mediterranean diet ...
The Hughes-Ingold symbol of the mechanism expresses two properties—"S N" stands for "nucleophilic substitution", and the "1" says that the rate-determining step is unimolecular. [1] [2] Thus, the rate equation is often shown as having first-order dependence on the substrate and zero-order dependence on the nucleophile. This relationship holds ...