Search results
Results from the WOW.Com Content Network
In computer science, a graph is an abstract data type that is meant to implement the undirected graph and directed graph concepts from the field of graph theory within mathematics. A graph data structure consists of a finite (and possibly mutable) set of vertices (also called nodes or points ), together with a set of unordered pairs of these ...
Open problems on word-representable graphs can be found in, [3] [8] [9] [10] and they include: Characterise (non-)word-representable planar graphs. Characterise word-representable near-triangulations containing the complete graph K 4 (such a characterisation is known for K 4-free planar graphs [17]). Classify graphs with representation number 3.
A graph structure can be extended by assigning a weight to each edge of the graph. Graphs with weights, or weighted graphs, are used to represent structures in which pairwise connections have some numerical values. For example, if a graph represents a road network, the weights could represent the length of each road.
Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph. A related problem is to find a partition that is optimal terms ...
The web graph W 4,2 is a cube. The web graph W n,r is a graph consisting of r concentric copies of the cycle graph C n, with corresponding vertices connected by "spokes". Thus W n,1 is the same graph as C n, and W n,2 is a prism. A web graph has also been defined as a prism graph Y n+1, 3, with the edges of the outer cycle removed. [7] [10]
A weighted graph or a network [9] [10] is a graph in which a number (the weight) is assigned to each edge. [11] Such weights might represent for example costs, lengths or capacities, depending on the problem at hand. Such graphs arise in many contexts, for example in shortest path problems such as the traveling salesman problem.
Graph theory, the study of graphs and networks, is often considered part of combinatorics, but has grown large enough and distinct enough, with its own kind of problems, to be regarded as a subject in its own right. [14] Graphs are one of the prime objects of study in discrete mathematics.
The H-free graphs are the family of all graphs (or, often, all finite graphs) that are H-free. [10] For instance the triangle-free graphs are the graphs that do not have a triangle graph as a subgraph. The property of being H-free is always hereditary. A graph is H-minor-free if it does not have a minor isomorphic to H. Hadwiger 1. Hugo Hadwiger 2.