Search results
Results from the WOW.Com Content Network
The ocean contains a natural buffer system to maintain a pH between 8.1 and 8.3. [11] The oceans buffer system is known as the carbonate buffer system. [ 12 ] The carbonate buffer system is a series of reactions that uses carbonate as a buffer to convert C O 2 {\displaystyle \mathrm {CO_{2}} } into bicarbonate . [ 12 ]
However, since blood is buffered with carbonate at physiological pH (near 7.4), free-base amines will be rapidly converted back into their acid form. In fact, 94.19% of cocaine will exist as the acid form under equilibrium at pH=7.4, calculated using the Henderson–Hasselbalch equation assuming a pKa of 8.61. [1]
A strong acid, such as hydrochloric acid, at concentration 1 mol dm −3 has a pH of 0, while a strong alkali like sodium hydroxide, at the same concentration, has a pH of 14. Since pH is a logarithmic scale, a difference of one in pH is equivalent to a tenfold difference in hydrogen ion concentration.
Nitric acid, with a pK value of around −1.7, behaves as a strong acid in aqueous solutions with a pH greater than 1. [23] At lower pH values it behaves as a weak acid. pK a values for strong acids have been estimated by theoretical means. [24] For example, the pK a value of aqueous HCl has been estimated as −9.3.
With pOH obtained from the pOH formula given above, the pH of the base can then be calculated from =, where pK w = 14.00. A weak base persists in chemical equilibrium in much the same way as a weak acid does, with a base dissociation constant ( K b ) indicating the strength of the base.
Buffer capacity falls to 33% of the maximum value at pH = pK a ± 1, to 10% at pH = pK a ± 1.5 and to 1% at pH = pK a ± 2. For this reason the most useful range is approximately pK a ± 1. When choosing a buffer for use at a specific pH, it should have a pK a value as close as possible to that pH. [2]
Since Tris' pKa is more strongly temperature dependent, its use is not recommended in biochemical applications requiring consistent pH over a range of temperatures. Moreover, the temperature dependance of the pKa (and in turn buffer solution pH) makes pH adjustment difficult. [8] (E.g., the 'room temperature' pH adjustment would not translate ...
McIlvaine buffer is a buffer solution composed of citric acid and disodium hydrogen phosphate, also known as citrate-phosphate buffer.It was introduced in 1921 by the United States agronomist Theodore Clinton McIlvaine (1875–1959) from West Virginia University, and it can be prepared in pH 2.2 to 8 by mixing two stock solutions.