Search results
Results from the WOW.Com Content Network
Phosphite esters are typically prepared by treating phosphorus trichloride with an alcohol. For alkyl alcohols the displaced chloride ion can attack the phosphite, causing dealkylation to give a dialkylphosphite and an organochlorine compound. [1] [2] The overall reaction is as follows: PCl 3 + 3 C 2 H 5 OH → (C 2 H 5 O) 2 P(O)H + 2 HCl + C 2 ...
Phosphite esters with tertiary alkyl halide groups can undergo the reaction, which would be unexpected if only an S N 2 mechanism was operating. Further support for this S N 1 type mechanism comes from the use of the Arbuzov reaction in the synthesis of neopentyl halides, a class of compounds that are notoriously unreactive towards S N 2 reactions.
Phosphites, sometimes called phosphite esters, have the general structure P(OR) 3 with oxidation state +3. Such species arise from the alcoholysis of phosphorus trichloride: PCl 3 + 3 ROH → P(OR) 3 + 3 HCl. The reaction is general, thus a vast number of such species are known.
When aliphatic alcohols are used the HCl by-product can react with the phosphate esters to give organochlorides and a lower ester. O=P(OR) 3 + HCl → O=P(OR) 2 OH + RCl. This reaction is usually undesirable and is exacerbated by high reaction temperatures. It can be inhibited by the use of a base or the removal of HCl through sparging.
It reacts with phenol to give triphenyl phosphite: 3 PhOH + PCl 3 → P(OPh) 3 + 3 HCl (Ph = C 6 H 5) Alcohols such as ethanol react similarly in the presence of a base such as a tertiary amine: [9] PCl 3 + 3 EtOH + 3 R 3 N → P(OEt) 3 + 3 R 3 NH + Cl −. With one equivalent of alcohol and in the absence of base, the first product is ...
The reaction mechanism of the Mitsunobu reaction is fairly complex. The identity of intermediates and the roles they play has been the subject of debate. Initially, the triphenyl phosphine (2) makes a nucleophilic attack upon diethyl azodicarboxylate (1) producing a betaine intermediate 3, which deprotonates the carboxylic acid (4) to form the ion pair 5.
The Abramov reaction is the related conversions of trialkyl to α-hydroxy phosphonates by the addition to carbonyl compounds. In terms of mechanism, the reaction involves attack of the nucleophilic phosphorus atom on the carbonyl carbon. [1] It was named after the Russian chemist Vasilii Semenovich Abramov (1904–1968) in 1957. [2]
The phosphite esters and tertiary phosphines also effect reduction: ROOH + PR 3 → P(OR) 3 + ROH. Cleavage to ketones and alcohols occurs in the base-catalyzed Kornblum–DeLaMare rearrangement, which involves the breaking of bonds within peroxides to form these products.