enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sidereal time - Wikipedia

    en.wikipedia.org/wiki/Sidereal_time

    More exactly, sidereal time is the angle, measured along the celestial equator, from the observer's meridian to the great circle that passes through the March equinox (the northern hemisphere's vernal equinox) and both celestial poles, and is usually expressed in hours, minutes, and seconds. (In the context of sidereal time, "March equinox" or ...

  3. Rotation period (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Rotation_period_(astronomy)

    27.321661 days [7] (equal to sidereal orbital period due to spin-orbit locking, a sidereal lunar month) 27 d 7 h 43 m 11.5 s: 29.530588 days [7] (equal to synodic orbital period, due to spin-orbit locking, a synodic lunar month) none (due to spin-orbit locking) Mars: 1.02595675 days [3] 1 d 0 h 37 m 22.663 s: 1.02749125 [8] days: Ceres: 0.37809 ...

  4. Diurnal motion - Wikipedia

    en.wikipedia.org/wiki/Diurnal_motion

    The time for one complete rotation is 23 hours, 56 minutes, and 4.09 seconds – one sidereal day. The first experimental demonstration of this motion was conducted by Léon Foucault. Because Earth orbits the Sun once a year, the sidereal time at any given place and time will gain about four minutes against local civil time, every 24 hours ...

  5. Solar time - Wikipedia

    en.wikipedia.org/wiki/Solar_time

    On a prograde planet like the Earth, the sidereal day is shorter than the solar day. At time 1, the Sun and a certain distant star are both overhead. At time 2, the planet has rotated 360° and the distant star is overhead again (1→2 = one sidereal day). But it is not until a little later, at time 3, that the Sun is overhead again (1→3 = one solar day). More simply, 1→2 is a complete ...

  6. Coin rotation paradox - Wikipedia

    en.wikipedia.org/wiki/Coin_rotation_paradox

    The paradox is related to sidereal time: a sidereal day is the time Earth takes to rotate for a distant star to return to the same position in the sky, whereas a solar day is the time for the sun to return to the same position. A year has around 365.25 solar days, but 366.25 sidereal days to account for one revolution around the sun. [6]

  7. Earth's rotation - Wikipedia

    en.wikipedia.org/wiki/Earth's_rotation

    Thus, the sidereal day is shorter than the stellar day by about 8.4 ms. [37] Both the stellar day and the sidereal day are shorter than the mean solar day by about 3 minutes 56 seconds. This is a result of the Earth turning 1 additional rotation, relative to the celestial reference frame, as it orbits the Sun (so 366.24 rotations/y).

  8. Time standard - Wikipedia

    en.wikipedia.org/wiki/Time_standard

    A sidereal rotation is the time it takes the Earth to make one revolution with rotation to the stars, approximately 23 hours 56 minutes 4 seconds. A mean solar day is about 3 minutes 56 seconds longer than a mean sidereal day, or 1 ⁄ 366 more than a mean sidereal day. In astronomy, sidereal time is used to predict when a star will reach its ...

  9. Earth orientation parameters - Wikipedia

    en.wikipedia.org/wiki/Earth_Orientation_Parameters

    Universal time tracks the Earth's rotation in time, which performs one revolution in about 24 hours. The Earth's rotation is uneven, so UT is not linear with respect to atomic time. It is practically proportional to the sidereal time, which is also a direct measure of Earth rotation. The excess revolution time is called length of day (LOD).