enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration ...

  3. Discrete Fourier series - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_series

    In digital signal processing, a discrete Fourier series (DFS) is a Fourier series whose sinusoidal components are functions of discrete time instead of continuous time. A specific example is the inverse discrete Fourier transform (inverse DFT).

  4. List of Fourier-related transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Fourier-related...

    These are called Fourier series coefficients. The term Fourier series actually refers to the inverse Fourier transform, which is a sum of sinusoids at discrete frequencies, weighted by the Fourier series coefficients. When the non-zero portion of the input function has finite duration, the Fourier transform is continuous and finite-valued.

  5. Fourier analysis - Wikipedia

    en.wikipedia.org/wiki/Fourier_analysis

    For periodic functions, both the Fourier transform and the DTFT comprise only a discrete set of frequency components (Fourier series), and the transforms diverge at those frequencies. One common practice (not discussed above) is to handle that divergence via Dirac delta and Dirac comb functions. But the same spectral information can be ...

  6. Discrete-time Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Fourier...

    In mathematics, the discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to a sequence of discrete values. The DTFT is often used to analyze samples of a continuous function.

  7. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    The sinc function, which is the Fourier transform of the rectangular function, is bounded and continuous, but not Lebesgue integrable. The Fourier transform may be defined in some cases for non-integrable functions, but the Fourier transforms of integrable functions have several strong properties.

  8. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    In particular, the JPEG image compression standard uses the two-dimensional discrete cosine transform, a discrete form of the Fourier cosine transform, which uses only cosine as the basis function. For two-dimensional arrays with a staggered appearance, half of the Fourier series coefficients disappear, due to additional symmetry.

  9. DFT matrix - Wikipedia

    en.wikipedia.org/wiki/DFT_matrix

    In this case, if we make a very large matrix with complex exponentials in the rows (i.e., cosine real parts and sine imaginary parts), and increase the resolution without bound, we approach the kernel of the Fredholm integral equation of the 2nd kind, namely the Fourier operator that defines the continuous Fourier transform. A rectangular ...