enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Incomplete gamma function - Wikipedia

    en.wikipedia.org/wiki/Incomplete_gamma_function

    Repeated application of the recurrence relation for the lower incomplete gamma function leads to the power series expansion: [2] (,) = = (+) (+) = = (+ +). Given the rapid growth in absolute value of Γ(z + k) when k → ∞, and the fact that the reciprocal of Γ(z) is an entire function, the coefficients in the rightmost sum are well-defined, and locally the sum converges uniformly for all ...

  3. Cesàro summation - Wikipedia

    en.wikipedia.org/wiki/Cesàro_summation

    Since the sequence of partial sums grows without bound, the series G diverges to infinity. The sequence (t n) of means of partial sums of G is (,,,, …). This sequence diverges to infinity as well, so G is not Cesàro summable. In fact, for the series of any sequence which diverges to (positive or negative) infinity, the Cesàro method also ...

  4. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    The partial sums of a power series are polynomials, the partial sums of the Taylor series of an analytic function are a sequence of converging polynomial approximations to the function at the center, and a converging power series can be seen as a kind of generalized polynomial with infinitely many terms. Conversely, every polynomial is a power ...

  5. Cauchy's convergence test - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_convergence_test

    The Cauchy convergence test is a method used to test infinite series for convergence. It relies on bounding sums of terms in the series. It relies on bounding sums of terms in the series. This convergence criterion is named after Augustin-Louis Cauchy who published it in his textbook Cours d'Analyse 1821.

  6. Summation by parts - Wikipedia

    en.wikipedia.org/wiki/Summation_by_parts

    Summation by parts is frequently used to prove Abel's theorem and Dirichlet's test. One can also use this technique to prove Abel's test: If is a convergent series, and a bounded monotone sequence, then = = converges. Proof of Abel's test.

  7. Summation of Grandi's series - Wikipedia

    en.wikipedia.org/wiki/Summation_of_Grandi's_series

    The basic idea is similar to Leibniz's probabilistic approach: essentially, the Cesàro sum of a series is the average of all of its partial sums. Formally one computes, for each n, the average σ n of the first n partial sums, and takes the limit of these Cesàro means as n goes to infinity. For Grandi's series, the sequence of arithmetic means is

  8. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    The fewer terms of the sequence are used, the simpler this approximation will be. Often, the resulting inaccuracy (i.e., the partial sum of the omitted terms) can be described by an equation involving Big O notation (see also asymptotic expansion). The series expansion on an open interval will also be an approximation for non-analytic functions.

  9. Padé approximant - Wikipedia

    en.wikipedia.org/wiki/Padé_approximant

    For given x, Padé approximants can be computed by Wynn's epsilon algorithm [2] and also other sequence transformations [3] from the partial sums = + + + + of the Taylor series of f, i.e., we have = ()!. f can also be a formal power series, and, hence, Padé approximants can also be applied to the summation of divergent series.