Search results
Results from the WOW.Com Content Network
A language is specified using a context-free grammar expressed using Extended Backus–Naur Form (EBNF). [citation needed] [6] ANTLR can generate lexers, parsers, tree parsers, and combined lexer-parsers. Parsers can automatically generate parse trees or abstract syntax trees, which can be further processed with tree parsers. ANTLR provides a ...
In practice, fully checking and completing the parsing of natural language corpora is a labour-intensive project that can take teams of graduate linguists several years. The level of annotation detail and the breadth of the linguistic sample determine the difficulty of the task and the length of time required to build a treebank.
It is used to parse source code into concrete syntax trees usable in compilers, interpreters, text editors, and static analyzers. [1] [2] It is specialized for use in text editors, as it supports incremental parsing for updating parse trees while code is edited in real time, [3] and provides a built-in S-expression query system for analyzing ...
Dependency, in contrast, is a one-to-one relation; every word in the sentence corresponds to exactly one node in the tree diagram. Both parse trees employ the convention where the category acronyms (e.g. N, NP, V, VP) are used as the labels on the nodes in the tree.
A definite clause grammar (DCG) is a way of expressing grammar, either for natural or formal languages, in a logic programming language such as Prolog. It is closely related to the concept of attribute grammars / affix grammars. DCGs are usually associated with Prolog, but similar languages such as Mercury also include DCGs.
However, if all parse trees of an ambiguous sentence are to be kept, it is necessary to store in the array element a list of all the ways the corresponding node can be obtained in the parsing process. This is sometimes done with a second table B[n,n,r] of so-called backpointers. The end result is then a shared-forest of possible parse trees ...
The grammar for a shift-reduce parser must be unambiguous itself, or be augmented by tie-breaking precedence rules. This means there is only one correct way to apply the grammar to a given legal example of the language, resulting in a unique parse tree and a unique sequence of shift/reduce actions for that example.
[28] [29] [30] In the case of structural ambiguity multiple parse trees describe the same secondary structure. This obscures the CYK algorithm decision on finding an optimal structure as the correspondence between the parse tree and the structure is not unique. [31] Grammar ambiguity can be checked for by the conditional-inside algorithm. [1] [6]