Search results
Results from the WOW.Com Content Network
A frequency distribution table is an arrangement of the values that one or more variables take in a sample. Each entry in the table contains the frequency or count of the occurrences of values within a particular group or interval, and in this way, the table summarizes the distribution of values in the sample. This is an example of a univariate ...
The image sampling frequency is the repetition rate of the sensor integration period. Since the integration period may be significantly shorter than the time between repetitions, the sampling frequency can be different from the inverse of the sample time: 50 Hz – PAL video; 60 / 1.001 Hz ~= 59.94 Hz – NTSC video
As with the ¯ and s and individuals control charts, the ¯ chart is only valid if the within-sample variability is constant. [4] Thus, the R chart is examined before the x ¯ {\displaystyle {\bar {x}}} chart; if the R chart indicates the sample variability is in statistical control, then the x ¯ {\displaystyle {\bar {x}}} chart is examined to ...
When is normalized with reference to the sampling rate as ′ =, the normalized Nyquist angular frequency is π radians/sample. The following table shows examples of normalized frequency for f = 1 {\displaystyle f=1} kHz , f s = 44100 {\displaystyle f_{s}=44100} samples/second (often denoted by 44.1 kHz ), and 4 normalization conventions:
In method 1, a slow pre-computation (such as the Remez algorithm) can be used to obtain an optimal (per application requirements) filter design. Method 2 will work in more general cases, e.g. where the ratio of sample rates is not rational, or two real-time streams must be accommodated, or the sample rates are time-varying.
For a given sampling rate (samples per second), the Nyquist frequency (cycles per second) is the frequency whose cycle-length (or period) is twice the interval between samples, thus 0.5 cycle/sample. For example, audio CDs have a sampling rate of 44100 samples/second. At 0.5 cycle/sample, the corresponding Nyquist frequency is 22050 cycles/second .
The empirical distribution function is an estimate of the cumulative distribution function that generated the points in the sample. It converges with probability 1 to that underlying distribution, according to the Glivenko–Cantelli theorem .
Fig 1: Typical example of Nyquist frequency and rate. They are rarely equal, because that would require over-sampling by a factor of 2 (i.e. 4 times the bandwidth). In signal processing , the Nyquist rate , named after Harry Nyquist , is a value equal to twice the highest frequency ( bandwidth ) of a given function or signal.