Search results
Results from the WOW.Com Content Network
The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", [2] [3] and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a source of data, a communication channel, and a receiver. The "fundamental problem ...
Entropy of a Bernoulli trial (in shannons) as a function of binary outcome probability, called the binary entropy function.. In information theory, the binary entropy function, denoted or (), is defined as the entropy of a Bernoulli process (i.i.d. binary variable) with probability of one of two values, and is given by the formula:
This is equivalent to choosing to measure information in nats instead of the usual bits (or more formally, shannons). In practice, information entropy is almost always calculated using base-2 logarithms, but this distinction amounts to nothing other than a change in units. One nat is about 1.44 shannons.
Although, in both cases, mutual information expresses the number of bits of information common to the two sources in question, the analogy does not imply identical properties; for example, differential entropy may be negative. The differential analogies of entropy, joint entropy, conditional entropy, and mutual information are defined as follows:
For an open thermodynamic system in which heat and work are transferred by paths separate from the paths for transfer of matter, using this generic balance equation, with respect to the rate of change with time of the extensive quantity entropy , the entropy balance equation is: [53] [54] [note 1] = = ˙ ^ + ˙ + ˙ where = ˙ ^ is the net rate ...
This equation gives the entropy in the units of "bits" (per symbol) because it uses a logarithm of base 2, and this base-2 measure of entropy has sometimes been called the shannon in his honor. Entropy is also commonly computed using the natural logarithm (base e, where e is Euler's number), which produces a measurement of entropy in nats per ...
Technically, entropy, from this perspective, is defined as a thermodynamic property which serves as a measure of how close a system is to equilibrium—that is, to perfect internal disorder. [9] Likewise, the value of the entropy of a distribution of atoms and molecules in a thermodynamic system is a measure of the disorder in the arrangements ...
The Shannon entropy of the random variable above is defined as = = = [ ()], by definition equal to the expected information content of measurement of . [ 3 ] : 11 [ 4 ] : 19–20 The expectation is taken over the discrete values over its support .