enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    A central cross section of a regular tetrahedron is a square. The two skew perpendicular opposite edges of a regular tetrahedron define a set of parallel planes. When one of these planes intersects the tetrahedron the resulting cross section is a rectangle. [11] When the intersecting plane is near one of the edges the rectangle is long and skinny.

  3. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    In geometry, a polyhedron (pl.: polyhedra or polyhedrons; from Greek πολύ (poly-) 'many' and ἕδρον (-hedron) 'base, seat') is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. The term "polyhedron" may refer either to a solid figure or to its boundary surface.

  4. Cross section (geometry) - Wikipedia

    en.wikipedia.org/wiki/Cross_section_(geometry)

    A plane containing a cross-section of the solid may be referred to as a cutting plane. The shape of the cross-section of a solid may depend upon the orientation of the cutting plane to the solid. For instance, while all the cross-sections of a ball are disks, [2] the cross-sections of a cube depend on how the cutting plane is related to the ...

  5. Table of polyhedron dihedral angles - Wikipedia

    en.wikipedia.org/wiki/Table_of_polyhedron...

    {3,3} (3.3.3) arccos (⁠ 1 / 3 ⁠) 70.529° Hexahedron or Cube {4,3} (4.4.4) arccos (0) = ⁠ π / 2 ⁠ 90° Octahedron {3,4} (3.3.3.3) arccos (-⁠ 1 / 3 ⁠) 109.471° Dodecahedron {5,3} (5.5.5) arccos (-⁠ √ 5 / 5 ⁠) 116.565° Icosahedron {3,5} (3.3.3.3.3) arccos (-⁠ √ 5 / 3 ⁠) 138.190° Kepler–Poinsot solids (regular ...

  6. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    The rhombic dodecahedron forms the maximal cross-section of a 24-cell, and also forms the hull of its vertex-first parallel projection into three dimensions. The rhombic dodecahedron can be decomposed into six congruent (but non-regular) square dipyramids meeting at a single vertex in the center; these form the images of six pairs of the 24 ...

  7. Icosahedron - Wikipedia

    en.wikipedia.org/wiki/Icosahedron

    Three interlocking golden rectangles inscribed in a con­vex regular icosahedron. The convex regular icosahedron is usually referred to simply as the regular icosahedron, one of the five regular Platonic solids, and is represented by its Schläfli symbol {3, 5}, containing 20 triangular faces, with 5 faces meeting around each vertex.

  8. Geodesic polyhedron - Wikipedia

    en.wikipedia.org/wiki/Geodesic_polyhedron

    Class II (b=c): {3,q+} b,b are easier to see from the dual polyhedron {q,3} with q-gonal faces first divided into triangles with a central point, and then all edges are divided into b sub-edges. Class III: {3,q+} b,c have nonzero unequal values for b,c, and exist in chiral pairs.

  9. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra: