Search results
Results from the WOW.Com Content Network
A primorial x# is the product of all primes from 2 to x. The first: 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810 (sequence A002110 in the OEIS). 1# = 1 is sometimes included. A factorial x! is the product of all numbers from 1 to x. The first: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 ...
To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division: checking if the number is divisible by prime numbers 2, 3, 5, and so on, up to the square root of n. For larger numbers, especially when using a computer, various more sophisticated factorization algorithms are more efficient.
For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x 2 – 4. Factorization is not usually considered meaningful within number systems possessing division , such as the real or complex numbers , since any x {\displaystyle x} can be trivially written as ( x y ) × ( 1 / y ) {\displaystyle ...
As 120 is a factorial and one less than a square (! =), it—with 11—is one of the few Brown number pairs. 120 appears in Pierre de Fermat's modified Diophantine problem as the largest known integer of the sequence 1, 3, 8, 120. Fermat wanted to find another positive integer that, when multiplied by any of the other numbers in the sequence ...
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
If all the prime factors of a number are repeated it is called a powerful number (All perfect powers are powerful numbers). If none of its prime factors are repeated, it is called squarefree. (All prime numbers and 1 are squarefree.) For example, 72 = 2 3 × 3 2, all the prime factors are repeated, so 72 is a powerful number. 42 = 2 × 3 × 7 ...
Get answers to your AOL Mail, login, Desktop Gold, AOL app, password and subscription questions. Find the support options to contact customer care by email, chat, or phone number.
With the exceptions of 1, 8 and 144 (F 1 = F 2, F 6 and F 12) every Fibonacci number has a prime factor that is not a factor of any smaller Fibonacci number (Carmichael's theorem). [57] As a result, 8 and 144 ( F 6 and F 12 ) are the only Fibonacci numbers that are the product of other Fibonacci numbers.